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1. Introduction
Astronomers face a fundamental challenge when observing the universe by making obser-
vations through Earth’s atmosphere. The atmosphere distorts and absorbs incoming light,
limiting the clarity and range of ground-based observations. Atmospheric turbulence causes
stars to twinkle and blurs images, a phenomenon known as astronomical seeing (1). Ad-
ditionally, large portions of the electromagnetic spectrum, particularly ultraviolet (UV),
X-ray, and infrared (IR) wavelengths, are absorbed readily by the atmosphere, restricting
what can be observed from Earth (2). Furthermore, light pollution and weather conditions
introduce additional spatial and temporal constraints on observations, further contributing
to the difficulty in making astronomical observations from the surface of the Earth.

Ground-based telescopes, including the Very Large Telescope (VLT) and the upcoming
Extremely Large Telescope (ELT), remain the most commonly used observational tools due
to their accessibility and cost-effectiveness (3). These telescopes can support large mirrors,
allowing for high-resolution imaging and deep-space observations. Unlike space telescopes,
they can also be regularly serviced and upgraded, extending their usefulness over decades.
However, atmospheric interference remains a fundamental issue. While modern adaptive op-
tics systems can partially compensate for turbulence in real time (4), ground-based telescopes
are ultimately limited by their location below the atmosphere.

Space-based telescopes avoid many of these issues by operating above Earth’s atmo-
sphere. The Hubble Space Telescope (HST) and the James Webb Space Telescope (JWST)
have demonstrated the advantages of orbital telescopes, capturing high-resolution images
without atmospheric distortion and accessing spectral bands that ground-based telescopes
cannot (5; 6). Space telescopes are critical for observing distant galaxies, exoplanets, and
cosmic background radiation, making them indispensable tools for astrophysics. However,
their benefits come with significant costs. The complexity of launching and maintaining
space telescopes means that projects often take decades to develop and require billions of
dollars in funding. Unlike ground-based telescopes, which can be repaired and upgraded,
most space telescopes are designed for one-time use, with failures often leading to complete
mission loss. While Hubble was serviceable by astronauts, most modern space telescopes do
not have that luxury.

Balloon-borne telescopes offer an alternative that balances some of the strengths and
weaknesses of both ground and space-based observatories. First developed in the 1950s, these
telescopes are carried into the stratosphere—above 99% of the Earth’s atmosphere—by high-
altitude balloons, reducing the impact of atmospheric turbulence while avoiding the extreme
costs associated with space launches (7). Despite their lower cost, balloon-borne telescopes
have historically struggled to achieve the pointing stability necessary for high-quality imag-
ing. However, recent advancements, such as the SuperBIT telescope, have demonstrated
that sub-arcsecond precision is possible from a balloon platform (8).

While balloon-borne telescopes offer a compelling alternative, they come with their own
engineering challenges. Unlike ground-based telescopes, which can be fixed to stable mounts
and use adaptive optics (9), or orbital telescopes, which rely on reaction control systems
for stability (10), balloon-borne telescopes must actively counteract motion caused by the
balloon’s pendulations and drift through the atmosphere (11). The stability of the optical
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assembly, and therefore the quality of the images produced, is fundamentally constrained
by the latency of the control systems used to maintain pointing precision. Addressing this
challenge is critical to unlocking the full potential of balloon-borne observatories, and recent
technological advancements provide new opportunities to improve their performance.

GigaBIT is a next-generation balloon-borne telescope currently under development, fol-
lowing on SuperBIT’s legacy. It features a larger primary lens and more ambitious science
goals, demanding even tighter pointing stability. Achieving the required pointing precision
for GigaBIT will necessitate an extremely responsive and stable attitude control system. In
particular, one key improvement area identified is the latency of the motor control loop used
to stabilize and point the telescope. High control loop latency can lead to sluggish responses
to disturbances and tracking errors that blur images. Professor Barth Netterfield’s team has
tasked our capstone design group with developing an electronic control system for GigaBIT
that minimizes this latency while reliably operating in the harsh stratospheric environment.
The goal is to enable sub-millisecond reaction times in the pointing motors, thereby dramat-
ically improving pointing accuracy. This document presents our progress toward that goal,
including background context, stakeholder analysis, project scope and requirements, and the
proposed system architecture for a low-latency motor control solution.
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2. Context and Prior Work

2.1 Pointing Precision
Balloon-borne telescopes operate in the stratosphere, high above most of the Earth’s atmo-
sphere. While this altitude dramatically reduces atmospheric distortion and enables access
to a broader spectrum, it introduces new challenges in precision pointing and stability. The
gondola is a suspended, dynamic platform, subject to drift, pendulation, and vibration.
Achieving high-resolution imaging requires that the telescope maintain arcsecond-level sta-
bility despite these disturbances. This demands a control system capable of processing sensor
feedback and commanding actuators at high frequency with low latency. In particular, with
gyroscopes operating at 1 kHz, the control loop must match or exceed this rate to provide
timely corrections. Without sub-millisecond response times, the system risks accumulating
drift, degrading image quality, and missing the mission’s science requirements.

2.2 SuperBIT Architecture
The SuperBIT project demonstrated how balloon-borne telescopes could achieve arcsecond-
level pointing by combining multi-stage control loops, on-board computing, and a carefully
coordinated software platform (11). Its main goal was to maintain tight pointing accuracy
in the harsh and dynamic conditions of stratospheric flight. This required real-time sensor
fusion, robust actuation strategies, and precise timing across multiple processors.

Layered Control Architecture

1. Coarse gimbals (stepper motors) slewed the telescope to within arcminutes of target
coordinates.

2. Reaction wheels and pivot countered gondola pendulation with continuous torque.

3. Inner-frame DC motors on torsional flexures removed residual disturbances at tens
of hertz.

4. Piezo tip–tilt mirror applied rapid corrections (> 100 Hz) to hold sub-arcsecond
stability on the focal plane.

Computing and Software Stack

A distributed PC/104+ network handled control, data, and telemetry:

• Master Control Computer (MCC) – QNX RTOS, 1 kHz gyro loop, mission se-
quencing.

• Star-Camera Computer (SCC) – lost-in-space solving and centroid tracking.

• Inner-Frame Computer (IFC) – telemetry logging and packet routing to the ground.
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Sensor Fusion and Latency Mitigation

SuperBIT’s pointing performance relied on integrating high-rate fiber-optic gyroscope data
with intermittent updates from star cameras. An extended Kalman filter corrected for
gyro drift using absolute orientation references derived from camera imagery. To mitigate
latency introduced by the star cameras’ processing time, the system employed predictive
forecasting—or dead-reckoning—so that the control loop could estimate interim centroid
positions between frames. This reduced the control system’s sensitivity to star camera
delays and preserved pointing accuracy in real time.

Telemetry and Ground Support

A custom UDP-based networking protocol packaged telemetry and commands into discrete
packets, simplifying transmission and synchronization. On the gondola, the MCC and IFC
assembled sensor data, motor states, and images for downlink. FIFO buffering absorbed
data bursts—such as when star camera frames coincided with sensor updates—ensuring
reliable delivery. Ground operators received this data in near real time and could issue high-
level directives. The IFC would interpret these commands and route them to appropriate
subsystems without interfering with the real-time loops.

2.3 Challenges with the Existing Design
Complexity of Custom Hardware SuperBIT relied on custom interface boards and
data acquisition modules, each tailored to specific sensors. This created a dense wiring
architecture that required careful integration of daughter boards for signal conditioning and
power distribution. The result was a fragile and intricate system prone to calibration issues
and failure modes such as loose cables or connector faults—especially under high-altitude
environmental stresses.

QNX OS Constraints QNX enabled deterministic scheduling and real-time guarantees,
but it also introduced friction due to its proprietary nature. Licensing restrictions and limited
third-party driver support made it difficult to adopt newer libraries or hardware. This led to
development slowdowns, reliance on in-house tools, and compatibility issues with emerging
standards.

Aging Architecture The system architecture, initially developed over a decade ago, de-
pended heavily on PC/104+ boards that are now difficult to source or upgrade. Mean-
while, modern embedded platforms offer far greater performance and power efficiency, as
well as broader compatibility with modern software ecosystems. Emerging tools and lan-
guages—such as Rust, with its strong safety guarantees—open new possibilities for more
reliable, maintainable, and scalable flight software. These developments motivate a com-
plete modernization of the control system design.
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Figure 1: System architecture of the SuperBIT control system, featuring a centralized MCC
connected to sensors, actuators, and subsystems via PCI and ISA buses. Ethernet links
extend communication to additional processors for star camera and inner frame control.
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2.4 Gigabit Upgrades and New Constraints
GigaBIT is the successor to SuperBIT and introduces significant upgrades across the board:
a larger primary lens, higher-rate gyroscopes, and more demanding science goals. These
improvements come with stricter requirements on pointing precision, now targeting sub-
arcsecond RMS error over long exposures.

From system profiling conducted by the lab group, it became clear that the 1 kHz gy-
roscope rate now defines the bottleneck for the control loop. Matching this sensor rate
requires that the entire motor control loop—including sensor readout, computation, and ac-
tuation—operate at sub-millisecond intervals. The existing SuperBIT system had a latency
of roughly 1.6 ms, which was adequate for past missions but no longer sufficient.

In addition to tighter latency, the GigaBIT redesign is motivated by:

• improved sensors and optics that demand higher control performance,

• the need to modernize and maintain the codebase using open and extensible technolo-
gies, and

• a shift toward modular development, enabling reusable test libraries and hardware
abstraction layers that support general-purpose flight control.

2.5 Problem Statement
The science goals of the GigaBIT telescope require a motor control system capable of sub-
millisecond latency. This target is set to align with the 1 kHz sampling rate of the gyroscopes
and to ensure real-time responsiveness to dynamic disturbances during flight.

However, reducing control latency is not simply a matter of replacing a few hardware
components. The existing system is tightly integrated, with interdependent communication,
scheduling, and processing layers. Introducing faster sensors or processors has cascading
effects across the architecture, including bandwidth limits, thermal constraints, and software
coordination. Therefore, the redesign must take a holistic view of the system.

This project focuses on designing a next-generation control system that:

• achieves <1 ms end-to-end latency from sensor input to motor actuation,

• enables modular hardware and software components for future reuse, and

• replaces legacy hardware and proprietary software with modern, open-source, and
maintainable alternatives.

A complete reevaluation of the architecture is required to meet these constraints without
compromising power efficiency, maintainability, or fault tolerance. Each subsystem—whether
for sensing, computation, or actuation—must be evaluated and integrated in a way that
supports the broader performance goals of GigaBIT.
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3. Stakeholders

3.1 Primary Stakeholders

3.1.1 University of Toronto Balloon Astronomy Group

Barth Netterfield’s Balloon Astronomy Group is the pioneering force behind using balloon-borne
platforms to achieve near-space imaging quality at a fraction of the cost. Their extensive ex-
perience in high-altitude operations and commitment to overcoming atmospheric challenges
is integral to the project’s success. They are one of our two main points of contact, providing
insights from past experiments and lessons learned.

3.1.2 Starspec

Starspec, led by Javier, is a start-up spun out of the Balloon Astronomy Group at the
conclusion of the SuperBIT project. By bringing cutting-edge technology and agile engi-
neering practices, Starspec collaborates with us to enhance system performance and reduce
latency—directly supporting our goal of sub-millisecond motor control.

3.1.3 Capstone Project Team

The Capstone team members gain valuable hands-on experience by tackling a challeng-
ing, real-world engineering problem that bridges theory with practical application. The
project offers an exceptional opportunity to hone skills in real-time control systems, hard-
ware integration, and collaborative design while contributing to breakthrough research in
balloon-borne astronomy.

3.2 Secondary Stakeholders

3.2.1 NASA

NASA serves as a critical regulatory and launch partner, providing guidelines and perfor-
mance benchmarks that ensure our design meets rigorous aerospace standards. They will
ultimately launch the balloon for which we design the control architecture.

3.2.2 Canadian Space Agency (CSA)

The CSA helps shape regulatory and operational standards for Canadian aerospace projects
and is a primary source of funding for the GigaBIT program.

3.2.3 NSERC

NSERC is a principal funding agency supporting the innovative research that drives this
project forward.
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3.2.4 University of Toronto

The University of Toronto supplies laboratory facilities, resources, and academic expertise
that form the foundation of our research and development. Their support fosters an envi-
ronment where advanced engineering solutions can be explored and refined.

3.2.5 Other Astronomy Groups

Other astronomy research teams can apply the improved control methodologies and system
architectures we develop to enhance their own observational platforms, elevating the overall
quality and precision of balloon-borne telescopes across the community.

3.2.6 Computational Physicists

Computational physicists may adapt our distributed real-time control algorithms and sensor-fusion
methods to other high-precision, data-intensive applications, broadening the impact of our
work beyond astronomy.

4. Scoping the System
The overall goal of the team is to provide the Balloon Astronomy Group with a recom-
mendation for a system which can control the various existing peripherals at the required
latencies in order to achieve the required pointing precision for GigaBIT. Due to some ex-
isting constraints on the design space—which will be elaborated on in the next section—our
design team comes into this project knowing that we most likely want some kind of central
computer, either alone or supported by other computers and/or microcontrollers, to read the
inputs of the various peripherals and output instructions to the various actuators via some
kind of networking protocol.

Moreover, due to the success of SuperBIT, GigaBIT’s predecessor, our team has access to
a reference design which, although not perfect and although it does not meet the new required
specifications for the upgraded telescope on GigaBIT, is known to have worked in the past
and can therefore save a lot of time and testing effort if something similar can be made to
work—both of which are important to our stakeholder. This basis for our design allowed us
to begin by exploring our various options and led us to the conclusion that we wanted to
test a selection of potentially viable components in order to make informed decisions on how
best to implement the final design. By finding out the latencies and throughputs of these
select candidate components and networking protocols, we hope to be able to later make an
informed decision on how best to implement an overarching system which solves our design
problem.

4.1 System Overview and Architectural Focus
To frame the subset of the system that our team is focusing on, we refer to the abstract
control loop shown in Figure 2. This figure highlights the core logical stages involved in tele-
scope attitude regulation: sensor data is acquired from gyroscopes and star cameras, passed

10



through an attitude estimation block, compared to a desired orientation (provided by user
input), and then processed through a control algorithm which produces motor commands
for coarse actuators.

Figure 2: Abstracted control loop defining the scope of our system architecture.

Our responsibility is not to modify the estimation or control logic, which are assumed
to be given, but rather to design the supporting architecture—both hardware and soft-
ware—that enables these computations to run within strict real-time constraints. This
includes selecting a central flight computer, identifying supporting processors (e.g., micro-
controllers or co-processors), and defining how tasks such as sensor readout, data routing,
computation, and actuation are communicated and performed across the system.

Specifically, our architectural focus includes:

• Selecting a suitable central computing unit and supporting processors (e.g., microcon-
trollers or co-processors).

• Defining how responsibilities are split between nodes, such as which processor handles
sensor interfacing, control computation, and motor command generation.

• Designing data pathways and I/O interfaces that support low-latency, high-frequency
data flow across the system.

• Choosing and integrating communication protocols (e.g., Ethernet, CAN, SPI) between
sensors, processors, and actuators.

Although elements such as star camera firmware, estimation filters, or the control law are
essential to the broader system, they are assumed to be provided and are not the focus of this
project. Our task is to ensure that the surrounding system architecture can meet the timing,
flexibility, and maintainability demands imposed by the GigaBIT mission requirements.

4.2 Deliverables and Project Contributions
Within the defined architectural scope, our team aims to develop a complete, testable sys-
tem design that can reliably meet the sub-millisecond latency requirement for motor control.
Rather than producing a balloon-ready embedded system, our deliverable is a well-validated
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architectural prototype: a benchtop system that captures the essential performance charac-
teristics of a flight-ready control loop.

This work is subdivided into focused components that reflect the interdependent nature
of system design.

• Design Exploration of Components: Based on research and subsystem analysis,
we will propose candidate components for diverse system architectures. These will
specify how tasks such as sensor interfacing, data processing, and packet transport can
be executed to meet timing constraints.

• Performance Benchmarking: We will evaluate the real-world latency and through-
put characteristics of selected computing platforms, peripheral buses, and networking
protocols. This includes microcontrollers, embedded computers, and various commu-
nication stacks. These benchmarks will be used to assess the feasibility of achieving
¡1 ms loop performance under representative conditions.

• Reusable Test Infrastructure: We will design and implement a general-purpose
benchmarking framework, including timing and profiling utilities. These tools will en-
able future developers to replicate our results and assess the performance of additional
components or system variants.

Our focus throughout is not on any single component but on delivering system-level
insights that guide future design. This includes practical measurements of real-time perfor-
mance under load—going beyond manufacturer specifications—and producing design guid-
ance informed by actual test results. These contributions will be useful not just for the
immediate control system, but for any future development that relies on low-latency embed-
ded control.

4.3 Stakeholder Value and Impact
The outcome of this project directly supports several key stakeholders in the balloon astron-
omy ecosystem:

• The Balloon Astronomy Group (GigaBIT Project) will benefit from the final
system architecture, benchmarking methodology, and end-to-end latency validation we
provide. Our work supplies concrete insights into how a distributed control approach
could be integrated into their telescope systems and helps derisk potential hardware
or architectural transitions.

• Starspec will gain from the modular design approach and supporting software infras-
tructure we develop. The control libraries, test harnesses, and interface patterns we
build can accelerate integration into new platforms or future experiments.

• The broader academic astronomy community will benefit from access to the
open-source benchmarking tools and analysis libraries created during this project.
These resources provide a transparent way to evaluate embedded systems and con-
trol architectures in real-world scenarios, and offer our empirical performance data
that may differ from vendor-provided specifications.
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By conducting a system-wide reassessment rather than relying on incremental upgrades,
this project aims to position GigaBIT with a control infrastructure that is performant and
maintainable.

5. Requirements Model
This section outlines the objectives, evaluation metrics, design constraints, and fixed sys-
tem specifications governing the development of our balloon-borne control system. These
requirements reflect both the performance expectations of the GigaBIT project and critical
limitations set by environmental, hardware, and architectural decisions.

5.1 Objectives
The primary objective of this project is to design, implement, and rigorously test a data
acquisition and control system for a balloon-borne astronomical telescope. The system will:

• Perform real-time computations essential for precise attitude determination and control
(ADC) of both the telescope and its gondola.

• Accurately and reliably read and process data from hundreds of analog and digital
sensors distributed across the gondola.

• Efficiently control several dozen motors and actuators dispersed across the gondola to
maintain sub-millisecond latency for critical tasks.

• Ensure system robustness and functionality in the challenging environment of strato-
spheric balloon flights, including extreme temperatures (−40◦C to 35◦C) and low pres-
sures (∼3 mBar).

• Optimize the system for a distributed, modular architecture, significantly minimizing
cabling complexity, especially between moving frames of the payload.

5.2 Performance Metrics
The project’s success will be evaluated using the following metrics:

Latency:

• Critical sensors and actuators must operate with latencies below 1 ms.

• Analog outputs must maintain a maximum latency of 2.5 ms at update rates up to
500 Hz.

• Digital encoders and analog inputs requiring rapid updates (100 Hz) must remain under
5 ms latency.
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Environmental Reliability:
• Demonstrated operational stability in controlled tests replicating stratospheric condi-

tions (−40◦C to 35◦C, 3 mBar).

Power Efficiency:
• Total system power consumption (excluding motors and heaters) must remain below

100W, with a preference for minimizing power use to ease thermal management chal-
lenges.

Communication Speed:
• Achieve Ethernet/Gigabit Ethernet latencies under 0.5 ms.

• Maintain a communication latency for tracking camera packets (50 bytes) below 1 ms,
ensuring frame rates between 24 Hz (USB3) and 34 Hz (5GigE) are achievable.

5.3 Design Constraints
The project must comply with several critical constraints:

Environmental Constraints:
• No fan-cooled systems due to ineffectiveness at low pressure.

• All cables must remain flexible and reliable at temperatures as low as −60◦C.

Real-Time Performance Constraints:
• Maintain sub-ms latency on all critical sensor and actuator control loops.

• Motor PWM control must reliably operate at frequencies of 10 kHz with a maximum
latency of 1 ms.

Power Constraints:
• Limit the total electrical consumption of the control system to 100W or less.

• Investigate the use of Power-over-Ethernet (PoE) as a potential power distribution
strategy to minimize cabling.

Communication and Interface Constraints:
• Ethernet (GigE, 5GigE) is mandatory for camera interfacing due to vendor driver

support on Linux/AMD64 systems.

• Minimize cable length and quantity, emphasizing distributed architecture over Ether-
net.

• Use of CAN, SSI, RS422, RS232, USB2/USB3 interfaces based on sensor or actuator
latency requirements (e.g., RS422 latency must remain ≤ 0.5 ms, RS232 ≤ 10 ms).
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Software Development Constraints:
• The preferred programming language is Rust due to reliability and maintainability,

though C is acceptable where Rust compatibility is not feasible.

• Avoid languages with extensive runtime environments (e.g., Python, Java).

5.4 Low-Level Input and Output Requirements

Low-Level Inputs

Table 1 summarizes the low-level sensor inputs required by the system, including analog and
digital signals used in control and telemetry loops.

Table 1: Low-level input requirements

Type Number Rate Latency to Compute
Loop

Analog Input (12 bit) 100 5 Hz –
Analog Input (16 bit) 10 100 Hz 5 ms + filter lag
Digital Level Inputs 10 5 Hz –
A/B/Z Incremental
Encoder (1 µs/pulse)

10 100 Hz 5 ms

Low-Level Outputs

Table 2 summarizes the low-level output devices and actuators that must be controlled by
the system, along with their required update rates and latency constraints.

Table 2: Low-level output requirements

Type Number Current Update Rate Latency
from Com-
pute Loop

Analog Output (16
bit)

5 – 500 Hz 2.5 ms

Digital Level Outputs 50 60 mA or 300 mW
open collector

5 Hz –

Heater PWM 100 2 A @ 40–58.4 V 8-bit at 1 Hz min –
Motor PWM (10 bit
@ 10 kHz)

10 5 mA 1000 Hz 1 ms

Pulse/Direction Step-
per Control

20 5 mA 100 kHz pulse rate,
100 Hz update

5 ms

I/O Buses

Table 3 provides a list of all communication interfaces that must be supported by the system,
with expected update frequencies and allowable latencies.
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Table 3: Other I/O bus requirements

Bus Type Number Update Rate Latency from
Compute Loop

CAN 5 5 Hz –
SSI 10 1000 Hz 1 ms
RS232 (UART) 20 115 kbps 10 ms
RS422 (UART) 10 1 Mbps 0.5 ms
USB3 10 – 0.5 ms
USB2+ 20 – 10 ms
Ethernet (internal) As needed – –
GigEthernet 8 – 0.5 ms
Ethernet (telemetry) 4 – –
SSD Interface For 10 TB

storage
Minimum USB3 –

6. Design Exploration
The goal of this design–exploration phase is to translate the high-level performance and
environmental requirements of the GigaBIT gondola into a coherent set of hardware choices.
In practical terms the task is to identify and characterize

1. Main flight computers,

2. Family of microcontrollers,

3. Motor-control interfaces, and

4. Deterministic network / bus fabric,

Because many electro-optical and mechanical subsystems have already been frozen by
earlier SuperBIT flights, the new electronics must interface with an extensive legacy I/O
footprint and must do so with minimal re-engineering of proprietary drivers originally written
for x86 Linux.

Our strategy is therefore to cast a wide net over commercially available, industrial-grade
components, evaluate each candidate against a ranked list of criteria—processing head-room,
deterministic timing, operating-temperature range, fanless cooling, and breadth of I/O—and
then converge on the smallest set that collectively meets or exceeds every requirement. Where
multiple candidates appear viable, we deliberately favour the highest-performance option
that fits inside the thermal and power envelopes; overspecification at this stage is inexpensive
compared with the cost of late design churn or in-flight failure. The following subsections
document this process, starting with the selection of the main flight computer, proceeding
through microcontroller and motor-driver choices, and concluding with the bus and network
protocols that tie the distributed architecture together.
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6.1 Main Computer Selection
When selecting the main computer for the GigaBIT system, we evaluated several key re-
quirements based on the specific operational conditions of stratospheric balloon missions:

• x86 Architecture (Very strongly preferred): Some existing I/O components ship with
proprietary drivers which only run on x86 systems. Since they are proprietary, we do
not have access to the code to change them, so using any other architecture would
require redesigning the drivers from scratch. The team has deemed this highly difficult
and impractical, although not impossible.

• Real-Time Linux Support (Preferred): If the required latencies can be achieved
without a real-time operating system, this may not be necessary. However, it is cur-
rently unknown whether such latencies can be reliably obtained without a real-time
OS. Linux is preferred because certain drivers are designed specifically for x86 Linux.

• Temperature Resistance (Preferred): The balloon does have integrated heating
systems to maintain electronic components at appropriate temperatures. At steady
state near the top of the stratosphere, solar panels work at full capacity during daylight
hours while ambient temperatures are around -15°C, which combined with integrated
heaters should maintain operational temperatures. Despite Prof. Netterfield’s lab
never experiencing computer failures due to temperature issues, temperature resistance
remains a concern because the balloon must pass through the coldest parts of the
stratosphere (around -50°C) while ascending to the destination altitude.

• Fanless Design (Required): The computer cannot rely on fans for cooling since there
is very little air in the upper stratosphere. Alternative cooling methods must be em-
ployed.

• Processing Power (Very strongly preferred): The previous SuperBIT system with
older generation technology could not achieve the low latencies required for the higher
precision desired in the GigaBIT system’s larger telescope lens. It would be extremely
difficult to achieve lower latencies with a slow computer, regardless of optimizations
elsewhere in the system.

• Extensive I/O Connectivity (Strongly preferred): The current design involves a
widespread distributed system requiring numerous connections. A computer with lim-
ited I/O would necessitate significant changes to the rest of the system, such as con-
densing I/O or implementing multiple kernels. Since much of the balloon has already
been designed, reducing I/O requirements is not feasible, though some functions could
potentially be offloaded to microcontrollers.

Based on these requirements, we initially investigated five categories of computing solu-
tions:

• Industrial Single Board Computers (SBCs)

• COM Express Modules
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• High-Performance Mini PCs

• Next Unit of Computing (NUC)

• PXI and VPX-based Embedded Systems

After thorough research into these categories, we converged on Industrial Single Board
Computers as the optimal solution. PXI and VPX Embedded Systems proved to be more
expensive and relied on legacy technology. NUC and High-Performance Mini PCs met our
fanless, x86, and performance requirements but lacked sufficient I/O options and temper-
ature resistance for our application. COM Express Modules offered good I/O flexibility
but compromised on temperature resistance and high-performance capabilities. For these
reasons, Industrial SBCs emerged as the most suitable choice for our main computer.

We then examined offerings from leading Industrial SBC manufacturers:

• Advantech (provider of previous SuperBIT computer)

• Kontron

• OnLogic

• Congatec

• AAEON

SBC Model Processor Features Suitability for Gi-
gaBIT

Advantech
AIMB-285

Intel 11th
Gen i5/i7

Multiple PCIe,
industrial-grade

High-performance and
expandable

AAEON UP
Xtreme i11

Intel i5/i7
11th Gen

AI acceleration,
ruggedized

Small, low-power,
high computing

Kontron 3.5”-
SBC-VR1000

AMD Ryzen
V1000

High GPU perfor-
mance, multiple I/O

Good for sensor-heavy
applications

OnLogic Karbon
801

Intel i9 24-
core

Fanless, ruggedized Good for extreme en-
vironments + 6xGbE

Congatec conga-
JC370

Intel i5/i7 Thin Mini-ITX, long
lifecycle

Reliable for aerospace
applications

IEI WAFER-
TGL

Intel Tiger
Lake

Compact, AI-ready Efficient, real-time
performance

Table 4: Comparison of Industrial SBC Options

From this list, many computers were eliminated due to insufficient temperature resistance,
as they could only operate down to 0°C or -20°C, which we deemed inadequate for our
application. Our previous reference was the Advantech ARK-1250L used in the SuperBIT
launch, which had proven reliable and compatible with most of the required I/O. Initially,
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we preferred to continue with a newer Advantech model, but discovered that their recent
offerings were not as rugged or temperature-resistant as needed.

Some additional candidates were ruled out due to insufficient performance. Since the
Advantech ARK-1250L (equipped with an Intel Core i5) had previously been determined
to be too slow for our application, we knew that any computer with less recent processors
or less RAM would likely underperform. Given that most of these computers cost several
thousand dollars, our budget limited us to selecting only one for initial latency testing.

From the remaining candidates, we selected the computer with the most processing power,
memory, and I/O ports while still maintaining a temperature rating down to -40°C (matching
the proven ARK-1250L). We opted for maximum capabilities to establish our performance
ceiling, reasoning that it would be better to know our lowest possible latency. If we could ex-
ceed our requirements, this would benefit future balloon designs. While our capstone team’s
testing budget didn’t permit purchasing multiple computers, the cost of a high-performance
computer remains insignificant compared to the telescope lens, making overspecification less
concerning for multiple balloon launches.

We ultimately selected the OnLogic Karbon 801 Low-Profile High-Performance Rugged
Computer, configured with:

• 24-core 5.2GHz Intel i9 processor

• 32GB RAM

• Operating temperature range: -40°C to 70°C

Front I/O 4× USB 3.2 Gen 2 ports
2× COM RS-232/422/485 ports
1× GPIO Terminal block (DIO, CAN, Ext. Switch)
2× 3FF Micro-SIM
1× 3.5mm audio
1× Power button
1× External fan connector

Rear I/O 2× or 6× 2.5 GbE LAN (2× PoE optional)
2× USB 3.2 Gen 2 ports
2× DisplayPort
5-Pin Terminal Block Power Input (12-48 VDC)

Table 5: OnLogic Karbon 801 I/O Specifications

6.2 Microcontroller Selection
Alongside the main computer, we needed to select appropriate microcontrollers to interface
with various sensors and actuators throughout the system, including cameras, motor drivers,
and encoders. Our stakeholders provided specific requirements regarding the type, quantity,
and latency of I/O peripherals needed.
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For this initial stage of the project, our goal was to identify and test a range of micro-
controllers to determine which would best meet our requirements. Since we had flexibility
in choosing communication buses and network protocols, we decided to test microcontrollers
supporting various options to compare latencies and select the optimal configuration for each
application within the system.

A critical consideration in our microcontroller selection was performance improvement
over the previous design. Without faster microcontrollers, we would be unable to reduce
latency in this area, making it difficult to justify deviating from the previous design. This
led us to focus on high-performance microcontrollers, which our research narrowed to two
main options:

• STM32 microcontrollers: Offering up to 480MHz clock speeds with excellent Rust
support libraries

• Teensy microcontrollers: Providing higher speeds (up to 600MHz) but with limited
Rust support

The STM32 family stands out as one of the highest-performing non-industrial COTS
microcontrollers available, with thousands of options and extensive support for Rust pro-
gramming. Since Rust support was emphasized as a key requirement by our stakeholders,
this gave STM32 a significant advantage despite its slightly lower maximum speed compared
to Teensy.

GigE / USB3 Connectivity Only a small subset of STM32 microcontrollers offer Gi-
gabit Ethernet (GigE) capabilities. After investigating the available options, we found only
four models with GigE support in stock, and only one made practical sense for our project.
The other three were considerably more expensive due to additional features like hardware
AI acceleration that weren’t necessary for our application. We therefore converged on the
STM32MP157D-DK1, the only available STM32 microcontroller offering GigE connec-
tivity without unnecessary features.

Our research revealed that no standard microcontrollers, including the entire STM32
family, offer USB3.0 support. However, this limitation didn’t impact our project since we
only needed either GigE or USB3.0 for communicating with the Star Camera, not both
simultaneously.

DIO/Analog and PWM Support Another requirement was for a microcontroller with
numerous digital I/O pins and 12-bit precision analog inputs that could also generate PWM
signals. These features are common in microcontrollers, with dozens of suitable options in
the STM32 family alone. The NUCLEO STM32 development boards are among the most
widely used and supported options, with abundant tutorials and example code repositories.

Considering availability and delivery time from suppliers like Digikey, we selected the
NUCLEO-H723ZG board. This choice was influenced by its widespread adoption, com-
prehensive documentation, and immediate availability.
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CAN and SSI Communication Controller Area Network (CAN) is a robust network-
ing protocol, while Synchronous Serial Interface (SSI) is a serial communication protocol.
We needed to identify boards with hardware support for these protocols, as shown in the
comparison table below:

Board CAN SSI UART Price
NUCLEO-F756ZG 1 42 10.5 24.08
Nucleo-H753ZI 8 150 15 28.15
STM32F746G Discovery 1 42 10.5
NUCLEO-G474RE 8 32 10.5 15.88
Nucleo-L476RG 8 10 3 14.85
Nucleo-F303RE 8 24 3 16.75
Nucleo-F401RE 8 42 10.5 20.96
B-L475E-IOT01A 1 10 3
STM32F3DISCOVERY 1 24 3 25.27
Waveshare STM32H743I 8 150 15
Waveshare CoreH743I 8 150 15

Table 6: Microcontroller Board Comparison for CAN/SSI Communication

Fortunately, the NUCLEO-H723ZG board previously selected for DIO and PWM appli-
cations also offers excellent CAN and SSI capabilities, making it suitable for testing all our
required communication protocols.

Teensy Boards To ensure comprehensive evaluation of all options, we also acquired sev-
eral Teensy 4.1 boards. These represent the only commercially available microcontrollers
faster than the STM32 family we were testing. While our preference was for the STM32
platform due to its superior Rust support (making it easier to program for both our team
and future system integrators), testing the Teensy boards provided a performance benchmark
and alternative option if the STM32’s speed proved insufficient.

6.3 Motor Control Interfaces
Motor controllers form a critical interface between the motor actuation layer and the micro-
processors in our system. Each motor includes a Hall Effect sensor for position feedback,
requiring the motor controller to decode this position data and communicate it to the mi-
croprocessor.

Several models support this functionality, and we selected the following candidates for
evaluation:

• Nucleo Shield for STM32

• AEK-MOT-2DC70S1 Tri-Motor Controller

• BLDC-Shield for STM32
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These were chosen based on several criteria:

• Cost under $100 per unit (budget constraint set by the PI)

• Support for multiple motors (minimum of two required)

• Compatibility with our selected microcontrollers

• Potential to provide sufficient latency margin for our overall 1ms latency requirement

These motor controllers will be evaluated for latency, amongst the other metrics listed
in the requirements model. The controller should provide sufficient latency margin to meet
the overall 1ms latency requirement.

6.4 Networking and Bus Protocols
Our distributed architecture requires efficient communication between components. The
selection of networking and bus protocols was guided by our microcontroller capabilities and
system latency requirements. The primary protocols under consideration include:

• Gigabit Ethernet (GigE): Selected for high-bandwidth communication with the
Star Camera, this protocol offers the throughput needed for image data transfer but
requires specific hardware support limited to certain microcontrollers.

• Controller Area Network (CAN): Known for its robustness in automotive and
industrial applications, CAN provides deterministic communication between control
nodes with built-in error detection and prioritization features. Our selected NUCLEO-
H723ZG supports up to 8 CAN interfaces.

• Synchronous Serial Interface (SSI): This reliable protocol for sensor data acquisi-
tion allows for precise timing control and is well-supported on our selected microcon-
troller with up to 150 SSI-capable pins.

• UART: For simpler point-to-point connections where the higher complexity of other
protocols isn’t needed, UART provides a straightforward communication option also
supported by our microcontrollers.

The versatility of our selected NUCLEO-H723ZG microcontroller in supporting all these
protocols allows us to perform comprehensive testing to determine the optimal configuration
for different subsystems within our distributed control architecture. This testing will focus on
achieving the balance of reliability, determinism, and low latency required for the GigaBIT
system’s demanding performance specifications.
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7. Prototype Tests
To ensure the selected hardware can meet the sub-millisecond latency requirements of the
GigaBIT control system, we conducted a focused prototyping campaign to measure the
timing performance of each critical subsystem—compute, sensing, actuation, and network
communication—under controlled bench conditions. All subsystems were synchronized to
a common GPS-disciplined pulse-per-second (PPS) timebase, and cycle-accurate latency
measurements were captured using hardware counters and packet timestamps. Each test was
repeated across more than 1,000 trials to characterize mean, median, and worst-case (99.9-
percentile) behavior, providing statistically robust validation against system-level timing
budgets.

The prototyping tests were organized into four main blocks: microcontroller computa-
tional load testing, motor control and interrupt latency evaluation, sensor filter processing
assessment, and Gigabit Ethernet communication timing. Each block was designed to iso-
late and stress a key portion of the control loop under realistic conditions, with acceptance
thresholds set to ensure sufficient margin for environmental deratings in flight. Together,
these results validate the feasibility of the distributed control architecture and quantify tim-
ing slack available for integration.

7.1 Microcontroller Computational Performance Tests

7.1.1 Test Setup and Methodology

In our distributed control architecture, a microcontroller will be used to execute the required
attitude determination algorithms that process sensor data and generate motor control com-
mands. For this system to meet our sub-millisecond latency requirements, it is essential
to select a microcontroller with sufficient computational performance to handle these time-
critical operations.

Rather than implementing the entire control algorithm on each candidate microcontroller,
which would be time-consuming and unnecessary, we worked with the Balloon Astronomy
Group to characterize the computational workload through assembly code analysis for their
existing algorithms. The core quaternion operations were broken down into their fundamen-
tal arithmetic operations as shown in Table 7.

Table 7: Quaternion Algorithm Computational Requirements

Operation Phase Multiplications Additions Transcendental Operations
Gyroscope data integra-
tion

700 500 6

Star camera update 850 600 4
Total 1,550 1,100 10

To evaluate microcontroller performance with this computational load, we developed
custom benchmarks for the STM32H723ZG (550 MHz) and the Teensy 4.1 (600 MHz). The
benchmarks were designed to model the quaternion operations under three distinct execution
patterns, each representing different degrees of optimization:
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1. Sequential execution: Performing all multiplications first, followed by all additions,
and finally all transcendental operations. This represents the most pessimistic case
where operations are strictly serialized. When operations are grouped this way, the
processor cannot utilize its separate functional units simultaneously, reducing potential
throughput.

2. Interleaved execution: Mixing different operation types throughout the algorithm.
This allows the processor to leverage its superscalar pipeline by executing different op-
erations (additions, multiplications) in parallel on separate functional units, improving
computational efficiency.

3. Parallel execution: This most realistic scenario introduces independent operations
with separate write addresses, allowing for instruction-level parallelism. This most
closely approximates the actual quaternion algorithm where not every operation de-
pends on the immediate previous result.

The most realistic test pattern (parallel execution) emulates how quaternion operations
would be implemented in practice. As shown in Figure 1, this approach uses multiple
accumulators to enable instruction-level parallelism, distributing the workload in a way that
allows the processor to perform operations simultaneously.

For all three patterns, we tested both 32-bit (float) and 64-bit (double) precision floating-
point operations, as both may be relevant to the pointing precision requirements of the
GigaBIT system.

To ensure accurate timing measurements, we utilized the ARM Cortex-M Debug Watch
and Trace (DWT) cycle counter, a hardware feature that provides cycle-accurate timing with
nanosecond precision. This approach eliminated the overhead and variability associated with
software-based timers, giving us highly reliable performance metrics for comparison.

7.1.2 Results and Analysis

The results of our microcontroller benchmark tests are presented in Tables 8, 9, and 10.

Table 8: STM32H723ZG Computation Time (µs)

Execution Pattern 32-bit Float 64-bit Double
Pattern 1 (Sequential) 300 1,400
Pattern 2 (Interleaved) 200 1,500

Table 9: Teensy 4.1 Computation Time - Patterns 1 & 2 (µs)

Execution Pattern 32-bit Float 64-bit Double
Pattern 1 (Sequential) 14.82 27.37
Pattern 2 (Interleaved) 20.07 32.54

Analysis of these results reveals several key insights:
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// Multiple independent accumulators enable instruction -level
parallelism

double accumulator1 = 1.0, accumulator2 = 1.1, accumulator3 =
1.2;

// Distribute multiplications across accumulators
for (int i = 0; i < totalMults /3; ++i) {

accumulator1 *= MULTIPLY_CONSTANT ;
accumulator2 *= MULTIPLY_CONSTANT ;
accumulator3 *= MULTIPLY_CONSTANT ;

}

// Distribute additions across accumulators
for (int i = 0; i < totalAdds /3; ++i) {

accumulator1 += ADD_CONSTANT ;
accumulator2 += ADD_CONSTANT ;
accumulator3 += ADD_CONSTANT ;

}

// Distribute transcendental operations across accumulators
for (int i = 0; i < totalTranscendentals /3; ++i) {

accumulator1 = sin( accumulator1 );
accumulator2 = sin( accumulator2 );
accumulator3 = sin( accumulator3 );

}

// Combine results ( stored in volatile to prevent optimization )
result = accumulator1 + accumulator2 + accumulator3 ;

Listing 1: Parallel execution benchmark with multiple independent accumulators

Table 10: Teensy 4.1 Computation Time - Pattern 3 (µs)

Execution Pattern 32-bit Float 64-bit Double
Pattern 3 (Parallel) - Se-
quential

6.41 20.80

Pattern 3 (Parallel) - Inter-
leaved

5.67 19.13
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// Enable ARM Cortex -M cycle counter
ARM_DEMCR |= ARM_DEMCR_TRCENA ;
ARM_DWT_CTRL |= ARM_DWT_CTRL_CYCCNTENA ;

// Function to read cycle counter register
static inline uint32_t getCycles () {

return ARM_DWT_CYCCNT ;
}

// Benchmark timing example
uint32_t startCycles = getCycles ();
runQuaternionBenchmark (numMults , numAdds , numTranscendentals );
uint32_t elapsedCycles = getCycles () - startCycles ;

// Convert to microseconds (F_CPU = 600 MHz on Teensy 4.1)
float elapsedMicros = elapsedCycles / (F_CPU / 1e6);

Listing 2: Cycle-accurate timing implementation for Teensy

1. Precision Impact: The STM32H723ZG shows a 4.7x slowdown when moving from
32-bit to 64-bit operations, whereas the Teensy 4.1 exhibits only a 1.85x slowdown.
This indicates that the Teensy has more efficient double-precision floating-point units.

2. STM32 Performance: The STM32H723ZG requires approximately 1.4-1.5 millisec-
onds to complete the double-precision quaternion operations using patterns 1 and 2.
This exceeds our 1-millisecond end-to-end latency budget before even considering sen-
sor readout or motor actuation time, making it unsuitable for our control loop.

3. Teensy Performance: The Teensy 4.1 completes the same double-precision workload
in 27.37-32.54 microseconds using patterns 1 and 2, and 19.13-20.80 microseconds with
pattern 3. This represents a 50-70x performance advantage over the STM32 for our
specific workload.

4. Execution Pattern Effects: On the Teensy, the more realistic parallel execution
pattern improved performance by 41-43% for double-precision calculations compared to
the sequential pattern, demonstrating that it is able to take advantage of the processor’s
pipeline and separate functional units for adds/multiplies.

7.1.3 Microcontroller Selection for Processing Outputs to Motor Controller

Based on our benchmark results, we can make informed decisions about which microcon-
troller platform is most suitable for the critical quaternion processing tasks in our distributed
architecture:

1. Performance Comparison: The Teensy 4.1 demonstrates much better performance
for our computational workload, completing double-precision calculations approxi-
mately 50-70x faster than the STM32H723ZG. With execution times of ∼20-33 µs,
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the Teensy uses only about 2-3% of our 1 ms latency budget for quaternion operations,
providing substantial margin for other control loop components.

2. Precision Trade-offs: While double-precision operations are preferred for final point-
ing accuracy, our results indicate that single-precision operations on the Teensy are
approximately 3.4x faster. The STM32 can perform the operations in an acceptable
amount of time, potentially making it viable for certain control paths if single-precision
calculations would meet the pointing accuracy requirements. However, the STM32’s
performance is still significantly slower than the Teensy.

3. Development Experience and Language Support: Through developing these
benchmarks, we gained practical experience with both platforms. The STM32 platform
offers excellent Rust support through the stm32-rs ecosystem (12), aligning with our
client’s programming language preference. In contrast, the Teensy currently has limited
Rust support but provides a very good development environment through Arduino
tools, making it easy to program in C/C++. Since the client indicated C would be
acceptable if Rust isn’t feasible, the Teensy’s development simplicity is a significant
advantage that offsets its more limited language support.

Given these considerations, the Teensy 4.1 is the better option for the quaternion pro-
cessing to compute updated control signals to the motors. Its performance allows for signif-
icant timing margin that can be used in other parts of the control loop. While the STM32’s
superior Rust support is valuable, the order-of-magnitude performance difference makes the
Teensy the clear choice for time-critical computational tasks, with an acceptable bare-metal
C programming environment.

7.2 Ethernet Latency Testing
One of the most promising candidates for controller-to-controller and controller-to-computer
communication was the use of Gigabit Ethernet protocol as a means to transmit large
amounts of data very rapidly. It was desired to obtain a benchmark for how fast this
transmission is so that it could be confirmed whether or not GigE was a viable transmission
option.

7.2.1 Test Setup and Methodology

Two STM32 development kit boards with Ethernet capability, specifically model STM32MP157D-
DK1, were connected together via a Gigabit Ethernet connection and packets were sent be-
tween them to evaluate the speed. Although there exist many different board options with
GigE capability, they cost > $100 each meaning that the budget did not have room to test
multiple pairs of boards. However, these boards all have similar Ethernet capability and it
is the other accompanying features which vary from board to board, so it was determined
useful to benchmark the speed for any of the viable boards, and if the exact model is changed
later it should accomplish similar speeds due to the specs of the Ethernet port in particular
being standardized and therefore remaining the same across boards.
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Figure 3: The Ethernet latency testing setup (front view).

To perform the Ethernet test, a cross-compiled C program employing UDP sockets was
transferred from the laptop to each of the 2 STM32 boards, with 1 acting as the receiver
and 1 acting as the sender. An Ethernet connection was set up between the two boards
using innate Linux commands such as ifconfig. The Linux could be operated directly from
the laptop via a serial PuTTY connection communicatioin over Micro-USB. This connection
was also used to launch the C program and observe the results.

7.2.2 Avenues Explored

The final decision to cross-compile C code on an external CPU and then transfer a compiled
version over Ethernet to to the STM32 micro-controller was only decided after attempting
some of the various other potential options.

When the STM32 was received from shipment it contained a pre-loaded Linux distribution
which is the Starter Package1. Using this distribution would be ideal because it does not
require flashing a new Linux onto an SD card, but the starter package is missing some
important Linux applications such as opkg, gcc, and netcat. Specifically, missing Netcat
meant that UDP packets could not be sent over Ethernet directly using Linux commands.
Moreover, no GCC meant that C code code not be compiled directly on the board, and no
opkg meant that the two aforementioned applications could not simply be installed through
the internet.

One of the first workarounds attempted was to use Python to compile a basic UDP test
1https://wiki.st.com/stm32mpu/wiki/STM32MP13_Discovery_kits_-_Starter_Package
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Figure 4: The Ethernet latency testing setup (side view).

locally on the STM32. The exact code can be found here. However, the issue with this
method is that Python has a high overhead which makes it slow compared to lower-level
programming languages such as C or Rust. Table 12 shows that the average round-trip time
is 1764us, which uses almost the entire allowed millisecond each way and would not leave
almost any time for calculations or sensor reading if the desired 1 millisecond total one-way
latency is to be achieved. As such, the numbers clearly showed that Python was not a viable
solution for receiving and sending Ethernet data within GigaBIT. The 7 tests run are not
enough to be able to directly compare this data to the C performance (Table 13), but since
the best-case Python timing exceeds the worst-case C timing (with task priority), it was
deemed that more tests would not be able to produce a better result and this solution was
ruled out.

The initial desire was to attempt to obtain the gcc C compiler onto the STM32 so that
this lower-level language could be used instead. The hope was that less overhead would
result in significantly faster packet transmission times. One promising method of doing
this was to compile a more powerful STM32 Linux version in the Distribution Package2.
Although no specific documentation could be found outlining the exact specifications of this
Linux system, the fact that it is intended to be the most powerful one available appeared
promising enough to give it an attempt. After many attempts and ¿9 hours of compilation
time this Linux image was finally compiled only to discover that it did not contain any more
useful applications than the original Starter Package (none of the applications outlined in
Table 11 were affected). It appears that the Distribution Package provides a way to edit

2https://wiki.st.com/stm32mpu/wiki/STM32MPU_Distribution_Package
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Application Status

ip ✓
ifconfig ✓
ping ✓
nc ✓
ethtool ✓
wget ✓
curl ✓
ssh ✓
netcat ✗

opkg ✗

gcc ✗

Table 11: Presence of key networking and utility applications in the STM32 root filesystem.

Mean (us) Min (us) Median (us) Max (us)
Python Round Trip 1763.78 1637 1805 1859

Table 12: Round-trip packet latencies measured from 7 Python tests.

the Linux Kernel before compiling it but this is outside of our area of expertise and so it
was deemed that this was not a reasonable solution which could be accomplished within the
available time to complete the Capstone project. The full notes on what was attempted are
visible in Appendix A.

The final attempted approach which was attempted and ended up succeeding involved the
use of a Software Development Kit (SDK) to cross-compile C programs on an x86 computer
but targeted towards the STM32’s ARM architecture so that the compiled file could then
be transferred and run on the micro-controller. This approach was not originally preferred
because the need to transfer files before running them made the development cycle more
complex as the time between making changes to the code and being able to run it and test it
increased significantly. However this still remains a valid approach because once GigaBIT is
in the air it is running compiled code and no changes can be made regardless. One advantage
of such a cross-compiler approach is that the full power of modern IDE’s and code editors,
potentially even including AI-assisted programming, can be used to write the code since it is
now done on a computer. There likely exists a way to use this SDK for Rust compilation but
time did not permit for testing of anything except straightforward C programming, which
did not require any changes to the existing SDK. The SDK used is contained within STM32’s
own Developer Package3.

Once cross-compiled there were two possibilities for transferring the compiled binaries to
the micro-controller. The first involved reading the SD card from the laptop, mounting the
Linux file system, and copying it to the right location in the SD card. This method was not
chosen because an SD card reader was not available at the time. The alternative method

3https://wiki.st.com/stm32mpu/wiki/STM32MPU_Developer_Package
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Figure 5: Round-trip packet latencies using Python.

was to use the scp file-copying tool to send the file over Ethernet to the board. This was not
ideal as it required temporarily severing the Ethernet connection between the two boards
in order to connect the laptop instead (since the two boards and the laptop only have one
Ethernet port each), but was an acceptable workaround.

7.2.3 Materials

The testing performed required the following materials:

• 1x Laptop (Windows 10 Laptop was used and tested but not a strict requirement)

• 2x STM32MP157D-DK1 boards

• 2x USB-C cable for power (was included with the board)

• 2x SD-card for Linux (was included with the board)

• 2x Micro-USB cable for board-to-laptop communication (was not included with the
board)

• 1x GigE Ethernet Cable

The laptop would ideally have connections for both USB-C power cables, both Micro-
USB communication cables, and an Ethernet port for file transfer to the boards. For this
specific test, the laptop used only had one USB-C port so the second STM32 microcontroller
obtained power directly from a wall socket via a USB-C power adapter. There is no reason
why any other type of computer with the required functionalities, including other operating
systems or a desktop computer, could not be used instead, although this may alter the exact
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setup steps and has not been tested. Moreover, ideally with an ethernet adapter it would
have been possible to set up both boards and the laptop on the same ethernet network to
save time. However, for the purposes of this test only one two-ended cable was obtained so
the file transfers to each board had to be done separately by plugging the ethernet between
the computer and each of the boards one at a time, then the cable could be plugged in
between the boards and the network re-established for the round-trip timing tests once the
files were successfully self-contained within the two boards.

7.2.4 Procedure

One valuable use of this document would be to help a future developer replicate these
Ethernet testing results, either to validate whether they hold true on a new specific system,
or to run on a different technology in order to compare to the latencies obtained on this
specific board. The exact commands and output logs run are fully outlined within Appendix
A, but this section aims to provide a condensed outline of what is required and some of the
important commands.

Figure 6: The specific Ethernet settings used for this test.

The steps followed during the test are outlined below, with the intention that it would
be possible to use them as instructions if replicating this test.

1. Set-up the SDK using a Windows Subsystem for Linux (WSL) terminal.

1.1. This simply requires following the instructions in the Developer Package Docu-
mentation.

1.2. The main issues encountered with this involved WSL’s interactions with the Win-
dows 10 Operating System, and so it was deemed important to store the SDK
directly within the root file-system of WSL for the installation to work properly
as described.
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Figure 7: The specific PuTTY settings used for this test.

2. Plug in and power on the STM32MP157D-DK1 boards. For the purposes of this
test, both were connected to the same laptop but it would be possible to have each
connecting to a separate one.

2.1. Inserting the SD-card with the preloaded Linux image into the corresponding
slot before boot-up should allow the STM32 micro-controller to boot-up Linux
automatically.

2.2. See Figure 4 for how exactly it was connected for this test.

3. Use two PuTTY windows to connect to each of the boards.

3.1. See Figure 4 for how exactly it was connected for this test.This was done using the
serial approach (Figure 7, left side), where the specific COM-port determination
was done as per Figure 8.

3.2. An alternative to serial is to ssh (Figure 7, right side) through PuTTY but this
requires an active Ethernet connection to the board and so could not be done
without the presence of an adapter which is able to allow the laptop and two
boards to reside on the same network at the same time (instead of two out of the
three which is possible with just one cable).

4. Set up the Ethernet connection on the computer.

4.1. On a Windows 10 computer, this could be done through the settings as per Figure
6.

4.2. The exact IP address used for the Windows 10 laptop for the purposes of this
experiment was 192.168.10.1. The recommended subnet mask of 255.255.255.0
was always used for all Ethernet connections.

5. Set up the Ethernet connection on each of the PuTTY boards.
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Figure 8: Finding the COM ports in use on a Windows10 Laptop.

5.1. Run the following command within the PuTTY terminal.
5.1.1. ifconfig eth0 192.168.10.2 up

5.2. The two IP addresses used were 192.168.10.2 and 192.168.10.3
5.3. Note that these steps needed to be repeated each time the Ethernet connection

was relaunched, for example when the cable needed to be removed from one board
to plug into the other to make sure both boards received their files.

6. Create sender.c and receiver.c files on Windows to run the tests.

6.1. The exact code files used can be found on the github. If using different IP ad-
dresses, it is important to send who the sender is sending to, but the receiver is
listening for any messages so no changes should be required there.

7. Transfer the code files from Windows to the micro-controller.

7.1. Run the following commands on WSL.
7.1.1. source /home/antoine/stm32mp1-sdk/environment-setup-cortexa7t2hf-neon-

vfpv4-ostl-linux-gnueabi
7.1.1.1. This path should be replaced with the actual location of the setup script

of the cross-compiler.
7.1.2. $CC receiver.c -o receiver

7.1.2.1. This assumes the file attempted to be transferred is called receiver.c
7.1.2.2. The $CC environment variable was previously set by the setup script.
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7.1.3. scp receiver root@192.168.10.2:/home/root/antoine/
7.1.3.1. This command assumes the receiver binary is located in the current WSL

directory from which this is run.
7.1.3.2. This command assumes that there exists a folder on the STM32 Linux

file-system called /home/root/antoine/
7.2. Repeating the above commands for the sender.c file onto the other board should

result in having all the required files

8. Run the code on the STM32 micro-controller.

8.1. This requires the laptop having an active PuTTY terminal to both boards with
them being connected together via an active Ethernet connection.

8.2. Run one of the two following commands on the first receiver PuTTY terminal
(running the sender first before the receiver will result in losing packets).

8.2.1. ./receiver
8.2.1.1. This must be run from the folder in which the receiver binary is located.
8.2.1.2. This should cause the receiver to stall and wait to receive packets, which

will not happen until the sender is run.
8.2.1.3. Once the test is finished, close the receiver connection with Ctrl + C

interrupt.
8.2.2. ./taskset -c 1 chrt -f 99 ./receiver

8.2.2.1. This was used as an alternative to the other above command in order to
run the file with priority.

8.2.2.2. taskset assigns the command to a specific CPU core and increasing the
priority ensures it is not interrupted.

8.3. Repeat the above for the sender in the above PuTTY terminal.
8.4. The output from running these programs should be visible within the respective

sender / receiver PuTTY terminals.
8.4.1. See Appendix A for exact outputs obtained.

9. After running the tests it is safe to power off and unplug the STM32 micro-controllers,
or optionally modifiy the code and repeat the procedure to run another test if desired.

7.2.5 Results

The above procedure was followed and the round-trip latencies were obtained. Specifically,
Table 13 reveals that using Linux priority scheduling allows for a worst-case round-trip
performance of 1323us and an average performance of 847us. Assuming that both directions
take a roughly equal amount of time, this corresponds to 423.5us average latency with a
worst case of 661.5us, both of which are well within the allotted 1000us desired latency
assuming the rest of the system is able to perform within the remaining time.
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Mean (us) Min (us) Median (us) Max (us)
No Task Priority 4329.78 658 909.00 333944
No Task Priority (outlier removed) 1000.34 658 903.00 2025
With Task Priority 847.33 674 774.50 1323

Table 13: Round-trip packet latencies for a 100-packet stream sent to the receiver at a rate
of 1 every millisecond.

Figure 9: Plot of the round-trip packet latencies run both with and without modified Linux
task priority.

Figure 10: Same plot of round-trip packet latencies as above but with the highly-variable
”No Task Priority” data omitted to better zoom in on the inherent latency variability even
when a task priority is included.

Specifically, it is worth noticing that without using Linux task priority (Figure 9) there is
a packet which took over 300ms round-trip, which is unacceptable. However this same issue
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did not occur within 100 trials when implementing a high priority, which seems to imply
that the current Linux system tested is able to successfully answer the demands outlines by
our 1ms latency requirement.

7.3 Digital Filtering
Having worked with balloon borne telescopes in the past, our client wanted us to experiment
with a digital filtering scheme that had been used in the past and compare its performance
to otherwise commonly used finite impulse response (FIR) filters. The client found that
cascading boxcar filters with odd and decreasing window size produced stable, zero-phase
shift filtered signals with low computational overhead. We investigated the difference, and
implemented both on Teensy microcontrollers.

7.3.1 Architecture

A single box–car (moving–average) filter of length4 b has impulse response

hLP[n] = 1
b

1{−M,...,M}(n), HLP(ejω) =
sin

(
bω
2

)
b sin

(
ω
2

) ,

(13). This is a Dirichlet (periodic–sinc) kernel that is flat at ω = 0 but decays only as 1/ω
and exhibits strong pass–band/stop–band ripple. Convolving s identical zero–phase windows
(or, in the frequency domain, multiplying their responses) sharpens the transition band:

HLP,s(ejω) =
[
HLP(ejω)

]s
.

Where the window length is further shortened geometrically at each stage,

bk+1 = A bk (A < 1),

which smooths the stop–band ripple that identical stages would otherwise reinforce (13).

7.3.2 Filter Characteristics and Performance

Figure 11 shows the impulse response of a three–stage box-car low–pass filter with an initial
window length5 b = 11. Each stage is the convolution of a length–b moving–average ker-
nel with itself, so cascading s identical stages raises the Dirichlet kernel to the sth power,
HLP,s(ejω) = [HLP(ejω)]s. Because the Kst implementation shortens the window geomet-
rically at each stage (bk+1 = Abk with A < 1) the stop–band ripple of identical stages is
smoothed further. Converting the cascade to a high–pass is trivial: xHP[n] = x[n] − xLP,s[n],
giving HHP,s(ejω) = 1 − HLP,s(ejω) with exactly zero gain at DC and unity gain at Nyquist.
Computationally the running sum is updated in O(1) per sample, so each stage costs only
two additions per output point.

4We write b = 2M + 1 (odd) so that the window is perfectly centred around the current sample. This is
gives the filter a zero-phase shift characteristic.

5Window lengths are written as b = 2M + 1 so the kernel is centred on the current sample.
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The left panel of Fig. 12 sweeps b while the stage count is fixed at s = 3. Short windows
(b = 5, 9) produce a gentle roll–off and behave almost like shelving filters, whereas long
windows (b = 21, 101) drive the corner frequency far lower and steepen the initial slope
so that everything below 0.05 cycles/sample is heavily suppressed. Increasing b also damps
the stop–band ripple because the factor

[
sin(·)/(·)

]3
attenuates the secondary lobes more

strongly for larger b.
Fixing b = 11 and sweeping the number of stages (right panel of Fig. 12) illustrates how

the cascade tightens the transition band. A single stage retains the classic sinc shape; each
extra stage squares the previous magnitude, so by s = 15 the filter exhibits approximately
40 dB of attenuation by 0.1 cycles/sample. The high–frequency end, however, remains pinned
to 0 dB for any s because the architecture enforces “input − low-pass” unity gain.

The central spike in Fig. 11 has amplitude ≈ 0.86, equal to the retained high–frequency
gain; the surrounding negative lobes sum to −0.86, so the total impulse sums to zero, the
hallmark of any linear–phase high-pass FIR. The compact negative “well” matches the narrow
transition zone seen in the frequency plots.

Figure 13 displays the impulse of a 71-tap Hamming-windowed sinc low-pass (fc = 0.3)
used as a reference. Figure 14 shows how varying the tap count or the cut-off reshapes its
magnitude response: longer filters tighten the knee, while lower cut-offs simply translate
the whole envelope leftward. The box-car cascade achieves a similar qualitative trade-off
(corner vs. steepness) but with no multiplications and only two additions per stage, making
it attractive for resource-constrained DSP chains.

Figure 11: Impulse response of a three–stage box-car filter (b = 11).
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Figure 12: Magnitude responses of the cascaded box-car high-pass. Left: vary window length
b (s = 3). Right: vary stage count s (b = 11).

Figure 13: Impulse response of a 71-tap Hamming windowed-sinc FIR (fc = 0.3).

Figure 14: Magnitude responses of the windowed-sinc FIR. Left: vary tap length (fixed
fc = 0.3). Right: vary cut-off (fixed L = 71).
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7.3.3 Implementation Details

A synthetic experiment was carried out entirely in Python to assess two low-pass filters
under identical conditions. The clean test-signal was a three-period, 8-bit saw-tooth that
increments from 0 to 255 and then wraps; zero-mean Gaussian noise was added to every
sample to obtain the noisy observation that each filter had to recover. The code path that
implements the filters was later ported verbatim to a Teensy 4.1 to confirm that real-time
execution at a 500Hz sample rate is feasible, but all quantitative results reported here were
obtained from the Python run on account of hardware faults that were beyond the scope of
the project.

The first algorithm is a 71-tap, Hamming-windowed sinc FIR with a normalised cut-off
of 0.02cycles/sample (about 0.3π rad/sample). Its impulse shows a narrow main-lobe and
rapidly decaying side-lobes, giving a steep but well-behaved transition band. The second
algorithm is a three-stage box-car cascade that begins with an 11-sample moving average
and shortens the window geometrically at each stage; the resulting kernel is much shorter in
time but has a broader main-lobe. Both filters are linear-phase; the FIR incurs 71 multiplies
and adds per output, whereas the box-car needs only a handful of additions because it
updates a running sum.

Figure 15 overlays the clean reference, the noisy input and each filtered output. By
comparing mean-squared error before and after filtering, the FIR achieves a 5dB reduction
in noise power, while the box-car reaches about 8dB. Visually, the FIR output is smoother
along the ramps but rounds the sharp resets of the saw-tooth, whereas the box-car tracks
those discontinuities more faithfully at the cost of slight ringing. These behaviours follow
directly from the two impulse shapes: the longer FIR blurs fast transitions, the shorter
box-car preserves them but lets a little ripple through.

The trade-off is clearer in the direct overlay of Fig. 16. During the linear portions both
filters stay within a few counts of the truth, yet at every wrap-around the FIR undershoots
and the box-car overshoots before rejoining the ramp. In practice the choice therefore de-
pends on the application: tasks that prize transient fidelity or ultra-low arithmetic cost will
favour the box-car, whereas applications that need a maximally flat pass-band and minimal
ripple will accept the higher-order FIR.
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Figure 15: Filtered time-series and measured noise-rejection. Top: 71-tap Hamming FIR
(Noise Rejection ≈ 5 dB). Bottom: three-stage box-car cascade (Noise Rejection ≈ 8 dB).

Figure 16: Overlay of the clean saw-tooth (black) and the two recovered signals: FIR output
(red) and box-car output (blue).

7.4 Motor Controller Latency
As mentioned in Section 6.3 and indicated in Figure 2, the motor controller was the final stage
in the actuation pipeline with the potential to introduce additional latency. The function
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of the motor controller is to convert digital PWM signals—generated by a microcontroller
executing the control logic—into electrical drive signals for the motors. This step must be
fast and deterministic to preserve the timing guarantees of the broader 1 kHz control loop.

To characterize this latency, we tested three motor controller candidates:

1. AEK-MOT-2DC70S1 (STMicroelectronics)

2. BLDC-Shield for STM32

3. Nucleo Motor Control Expansion Board

Each controller was interfaced either with a Teensy 4.1 or an STM32 Nucleo board, depending
on compatibility. The test setup is shown in Figure 17.

Figure 17: The test setup for measuring motor controller latency.

7.4.1 Methodology

A PWM waveform was generated at 10 kHz with a 50% duty cycle by the Teensy 4.1. The
test measured the delay between a rising edge of the PWM command and the onset of a
measurable electrical response at the motor terminals, using a digital oscilloscope. Over 1,000
trials were conducted per controller to compute mean, median, and worst-case latencies.
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7.4.2 Results

Figure 18 shows a sample oscilloscope capture illustrating the measured latency. Quantitative
results are tabulated below:

Figure 18: The captured latency of the motor controller from the time of issuance of a
command to the electrical signal being sent to the motor.

Table 14: Measured electrical response latency for motor controllers.

Motor Controller Avg. Latency (µs) 99.9% Worst-Case (µs)

AEK-MOT-2DC70S1 4.2 6.3
BLDC-Shield (STM32) 0.85 1.1
Nucleo Motor Shield 0.19 0.42

7.4.3 Discussion

All three motor controllers demonstrated sub-microsecond average latencies, with the AEK-
MOT-2DC70S1 showing slightly higher propagation delays due to its integrated automotive
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H-bridge topology. These results confirm that the electrical actuation layer introduces neg-
ligible latency relative to the overall 1 ms system budget.

When added to the microcontroller-side interrupt latency, which was approximately
18.2 µs on the Teensy 4.1, the worst-case latency still came in at around 25 µs This leaves
over 975 µs for sensor readout, control computation, and communication.

Given its multi-motor support and consistent timing profile, the AEK-MOT-2DC70S1
was selected as the baseline actuation interface. Despite slightly slower response times, its
latency was stable and well within budget. More importantly, its integration with Teensy 4.1
allowed reuse of existing C libraries and avoided the need for SPI-based command translation.

All three controllers proved viable for future expansions of the system. Their low prop-
agation delays ensure that electrical actuation will not be a limiting factor in achieving
sub-millisecond loop timing in GigaBIT’s distributed control architecture.
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8 Conclusions, Limitations, and Future Work
The goal of this project was not to deliver a final balloon-ready control system, but rather
to produce validated architectural insights that would inform the design of GigaBIT’s next-
generation motor control system. To that end, our team developed a benchtop system to
evaluate key components in isolation and under load, focusing on the timing performance
of candidate computing platforms, microcontrollers, communication protocols, and signal
processing pathways. Our results offer actionable data points for selecting subsystems that
together enable sub-millisecond latency control, while also providing reusable testing tools
that will benefit both our client and the broader balloon astronomy community.

We demonstrated that the OnLogic Karbon 801, an industrial-grade embedded computer,
is a strong candidate for the central control node in GigaBIT. It meets thermal, I/O, and
computational performance criteria, and supports the open-source Linux environment pre-
ferred by stakeholders. On the microcontroller side, Teensy 4.1 proved vastly superior to the
STM32H723ZG for latency-critical numerical computations. In benchmark tests modeling
the quaternion-based control workload, the Teensy completed double-precision floating-point
operations in under 21 µs—less than 3% of the overall latency budget—thanks to its efficient
pipeline and hardware math units. By contrast, the STM32 could not complete the same
task in under 1.4 ms, even with simplified operation ordering.

Our testing further validated that STM32 microcontrollers with Gigabit Ethernet sup-
port can achieve reliable packet transmission with one-way UDP latency under 0.5 ms when
programmed in C. This supports their use in lower-priority sensing and telemetry pathways.
While Python-based implementations were initially explored, they exhibited round-trip la-
tencies near 1.8 ms and were conclusively ruled out. We also validated that STM32s can
handle real-time digital signal processing tasks—such as fixed-point filtering of encoder sig-
nals—with minimal latency, reinforcing their utility for simpler sensing and actuation support
tasks in a distributed control architecture.

One key component of the pipeline—the latency contribution of the motor controller—was
also characterized as part of this work. Tests on the AEK-MOT-2DC70S1, BLDC-Shield,
and Nucleo Motor Shield revealed that all three controllers introduced only microsecond-scale
electrical response delays, with worst-case latencies ranging from 0.42 µs to 6.3 µs. When
combined with the ∼18.2 µs computational latency on the Teensy 4.1, the full actuation path-
way remains well below the 1 ms budget. These results confirm that motor control hardware
will not be a limiting factor in achieving GigaBIT’s sub-millisecond closed-loop performance
target. Instead, the motor controller was selected based on its ease of integration into the
selected microcontrollers and the broader system architecture.

In alignment with our stated deliverables, this project also yielded a general-purpose
benchmarking framework, including precision timing utilities and execution-pattern model-
ing scripts. These tools are designed for reuse by stakeholders in future balloon missions
or control system upgrades. They provide a means for profiling arbitrary hardware under
domain-specific workloads—enabling rigorous comparison of future candidates and making
performance reproducibility easier across teams and time.

Together, these outcomes directly support the architectural decisions faced by the Gi-
gaBIT team. Our benchmarking results illuminate trade-offs between platforms (e.g., raw
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speed vs. language ecosystem), quantify protocol-level communication performance, and
isolate which subsystems impose meaningful timing bottlenecks. They also inform how to
divide responsibilities between processors in a distributed control loop: high-performance
math on Teensy; I/O handling, digital filtering, and Ethernet messaging on STM32; and
system-wide coordination on the OnLogic computer.

Limitations
Several limitations frame the interpretation of our results. First, our tests were performed
in controlled lab conditions and do not account for in-flight environmental stressors such
as temperature extremes, pressure changes, or vibration. Second, we only tested a subset
of viable components—our budget and schedule limited us to a single computer and a few
microcontrollers. While the selected devices represent reasonable performance envelopes,
they do not fully characterize the design space. Third, our Ethernet testing focused on point-
to-point latency with minimal network contention; more complex traffic scenarios may yield
different results. Lastly, while we implemented digital filtering and UDP communication
tests, we did not prototype an integrated control loop with real sensors and actuators—the
full end-to-end latency of such a system remains to be measured.

Future Work
The next steps are clear. First, motor controller latency must be fully characterized and in-
tegrated into the total latency budget. Second, we recommend closed-loop integration tests,
using real sensors and motors, to validate timing in context and identify jitter or timing
bottlenecks introduced by concurrent processes. Third, we encourage further firmware de-
velopment in Rust—particularly on STM32s—to bridge the gap between rapid development
and deterministic execution. Additionally, future work should stress-test components under
thermal and vibration conditions representative of flight, ideally in a controlled chamber.

From a tooling standpoint, extending the benchmarking framework to include automated
test pipelines, real-time logging, and cross-device synchronization will increase its utility to
the astronomy group and collaborators. These enhancements will help future engineers
profile new boards, validate assumptions, and refine subsystem boundaries as the GigaBIT
platform evolves.

In sum, our work delivers exactly what was scoped: concrete benchmarking data to guide
architectural decisions, reusable infrastructure to ease future development, and technical
insight into which components merit integration, replacement, or further exploration. These
results support our client’s design process and provide lasting value to the broader community
of low-latency embedded system developers working in balloon-based astronomy and beyond.
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A. Appendix: Testing Full Documentation

A.1 Ethernet Testing
The STM32 microcontroller ethernet testing performed, including exact commands run and
their respective outputs, are more fully documented on OneNote at this SharePoint link.
The OneNote documentation is too long to fit nicely within this document as it contains
complete logs of failed attempts, but may be useful to someone aiming to replicate some of
the actions outlined within. The exact code ran is publicly available at https://github.
com/antoinevilain001/esc472-capstone.
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