
aUToronto SAE AutoDrive Challenge II Concept Design Report
Year 2

Michael Acquaviva, Amy Chen, Brian Cheong, Kelvin Cui, Jacob Deery, Abhishek Kakad, Mustafa Khan, Alex Liu
Katrina Meng, Edwin G. Ng, Chang Keun Paik, Sandro Papais, Jingxing Qian, Xiaonong Sun, Matthew Teichman,
Shi Jie Wei, William Wen, Sean Wu, Jenny Xu, Stephen Yang, Jiachen Zhou, Jonathan Kelly, Steven L. Waslander

University of Toronto, Apr 30, 2023

1 INTRODUCTION

Following the ground-breaking success of the original
four-year AutoDrive Challenge that ended in 2021, SAE
and General Motors (GM) have again partnered to renew
this international collegiate design competition, AutoDrive
Challenge Series II, for another four years. The goal of
the competition is to develop and demonstrate a Level 4
autonomous vehicle, capable of navigating urban driving
environment, as defined by SAE Standard (J3016 [1]). In
Year 1 of the Series II, aUToronto successfully designed
a solid perception system with state-of-the-art sensing
technologies and multi-modal computer vision
techniques [2]. This year’s competition focuses on
vehicle controls and interface development on the new
Chevrolet Bolt EUV the team received from GM, which
we retrofit to integrate with last year’s perception system.

With the introduction of the new vehicle, this year’s
Dynamic Challenge consists of four subcategories,
Vehicle Integration Challenge (VIC), Perception
Challenge, Intersection Challenge, and Highway
Challenge. The VIC is conducted at the team’s testing
facility while the other three challenges will take place at
MCity in Ann Arbor, Michigan. Figure 1 unveils our new
autonomous vehicle, Artemis, parked on the test track at
the University of Toronto Institute for Aerospace Studies
(UTIAS).

Each challenge focuses on testing different autonomy
components of the system. In the VIC, the team is tasked
to acquire basic autonomous lateral and longitudinal
controls of the vehicle by sending properly formatted
Controller Area Network (CAN) commands to achieve
target steering, torque, and deceleration values. The
Perception Challenge, similar to Year 1, requires
accurate detection of static or dynamic obstacles and
various traffic signs and lights while the car is manually
driven by a safety driver throughout a pre-determined
path in MCity. For the rest two challenges, Artemis will
demonstrate her autonomous capabilities in intersection
and highway environments. The Intersection Challenge
consists of a sequence of traffic intersections on a given
path throughout which the vehicle must detect all traffic
signs and lights, and autonomously react to the traffic
controls legally. The Highway Challenge evaluates the
vehicle’s ability to autonomously identify traffic and speed
limit signs, and to legally navigate around static obstacles
or construction zones by lane change maneuvers.

3 x LiDARs GNSS / INS

3 x Wide-angle Cameras

1 x Long-range Camera

1 x LiDAR
1 x RADAR

Figure 1: Our autonomous vehicle, Artemis, at the
University of Toronto Institute for Aerospace Studies.

In order to successfully achieve these desired
functionalities, our team has built Artemis from the
ground up with deployment in mind. It features a
weatherproof rooftop and bumper sensor suite that
provides frontal sensor coverage in multiple modalities
and can be mounted on any passenger vehicle with
minimum modification. Building on the perception system
designed last year, this system, as illustrated in Figure 1,
perceives the surrounding using 1 long-range and 3
wide-angle cameras, 4 LiDARs, and 1 automotive
long-range radar, in ranges far beyond the competition
requirements to ensure safety and redundancy. To make
full use of the sensor suite, Artemis’ onboard
server-grade compute platform processes all data in real
time, running the entire autonomy stack of perception,
planning and control developed by our own team.

This report first introduces the sensor suite we designed
in Year 1 and highlights the modifications made when
migrating onto the vehicle. The following two chapters
describe the mounting and wiring of sensors,
accessories, and the compute platform to the vehicle
power management system. Next, we present the
redesigned autonomy software architecture and detail

1

our algorithm selection and implementation. The entire
perception function group is discussed in Sensor Fusion,
while Route Planning covers both planning and control.
Finally, we summarize the changes from Year 1 to Year 2
and conclude with the lessons learned in developing
Artemis.

The report is organized as follows:

1. Introduction
2. Sensor Suite
3. Hardware Design and Mounting
4. Vehicle Electrical Design
5. Software Architecture
6. Sensor Fusion
7. Route Planning
8. Summary of Changes from Year 1 to Year 2
9. Papers and Conferences

10. Conclusion
11. References

2 SENSOR SUITE

Design of the sensor suite directly affects an autonomous
vehicle’s perception capability, which leads to operational
safety. Our Year 1 perception cart was designed with
future-proofing in mind. In fact, it was designed to be
easily adapted to a 2022 Bolt EUV for the purpose of
Level 4 autonomy. According to the sensor coverage
analysis presented in the Year 1 report, our sensor suite
design provides the necessary ˘800 horizontal, ´400 to
`50 vertical field-of-view and 60 meters coverage to
handle worst-case traffic scenarios, which exceeds the
competition’s perception requirement of ˘600 and 40
meters.

2.1 SENSOR SELECTION
In order to select sensor modalities for Artemis, we
considered the core capabilities necessary for the
perception system based on the scored outputs of the
dynamic challenges. Figure 2 shows the Pugh decision
matrix outlining the options we considered for the
perception sensor suite. It is clear that no single sensor
is able to fully satisfy all criteria; camera-only lacks 3D
localization information, while LiDAR-only and radar-only
lack the appearance information necessary for

Crit
eria

W
eigh

t

Lid
ar

Only

Cam
era

Only

Rad
ar

Only

Cam
era

+ L
idar

Ste
re

o Cam
era

Cam
era

+ L
idar+

 Rad
ar

Lane boundary detection 0.5 0.5 1 0 1 1 1
Static object classification 2 0.25 1 0 1 1 1

Dynamic object classification 2 0.7 1 0 1 1 1
3D object localization 2 1 0 0.7 1 0.5 1

Object velocity 1 0 0 1 0 0 1

Algorithmic complexity 0.5 1 0.8 0.9 0.6 0.8 0.5
Computational resources required 1 0.7 0.5 1 0.5 0.5 0.4

Power consumption 0.5 0.7 0.8 1 0.5 0.6 0.4
Sensor cost 1 1 1 1 0.5 0.5 0.3

6.45 6.3 5.35 7.55 6.7 8.15
4 5 6 2 3 1

Totals
Rank

Perception Task Performance

Integration

Other Considerations

Figure 2: Sensor suite decision matrix.

classifying road signs and traffic lights. From the hybrid
architectures, camera + LiDAR and camera + LiDAR +
radar both perform well on detection and localization
tasks, with the latter preferred due to the direct velocity
measurements provided by radar. While direct velocity
measurements are not strictly necessary, as the velocity
can be estimated by the object tracker, they can
significantly improve tracking if properly integrated into
object motion modelling.

As the top option, we selected camera + LiDAR + radar
as the sensor architecture for Artemis. All mechanical
and electrical systems are designed to support this
architecture. While this sensor architecture is largely
similar to the architecture used on the Year 1 perception
cart, several changes have been made to the specific
sensors used. The following subsections outline the
sensors selected for each modality.

2.1.1 GNSS/INS Selection Starting from Year 2
onwards, aUToronto has partnered with NovAtel, a
division of Hexagon, for Artemis’ GNSS/INS solution.
The primary motivation for this change was the
availability of NovAtel’s TerraStar-C PRO GNSS
correction service, which enables centimeter-level
positioning with rapid (<3 minute) convergence and
instant re-convergence. This accuracy enables Artemis
to rely entirely on GNSS/INS for accurate positioning
during dynamic events, rather than relying development
of sophisticated localization algorithms to correct the
vehicle position estimate relative to the map.

Artemis uses the NovAtel PwrPak7D-E2 receiver, a
dual-antenna receiver with an integrated IMU. As a fully
integrated GNSS/INS system, this unit performs onboard
sensor fusion between GPS and IMU information,
providing Artemis with a robust, filtered estimate of the
vehicle position, orientation, and velocity.

2.1.2 LiDAR Selection Cepton is the official LiDAR
supplier for AutoDrive Challenge II. In current
configuration, Artemis continues to use 4x Cepton P60.
However, all systems are designed to additionally
support the new Cepton X90 LiDAR. The top center and
bumper LiDAR mounts are designed to be compatible
with both the P60 and X90, facilitating easy
reconfiguration of the sensor platform.

2.1.3 Camera Selection As with the Year 1 perception
cart, Artemis uses 4x Atlas ATP071S cameras from
Lucid Vision Labs. These cameras were selected for
their high framerate, resolution, and dynamic range, all of
which ensure consistent image quality over the diverse
range of lighting conditions that a vehicle may encounter.
Moreover, the IP67 rating enables testing and operation
in wet conditions, commonly encountered in Canada
during the winter and spring. A detailed outline of the
camera selection criteria can be found in the Year 1

2

Figure 3: Artemis Sensors Coverage.

Concept Design Report.

2.1.4 Radar Selection In place of the Continental
ARS 430 radar used in Year 1, Artemis uses the
Continental ARS 548. The primary advantage of the 548
over the 430 is the significantly improved range of 300 m
vs 60 m. The ARS 548 maintains a high FOV of ˘600,
with distance resolution of 0.22 m and accuracy of ˘

0.15 m. The greatly increased range significantly
enhances the ability of the system to detect vehicles and
pedestrians at distances past the range of the LiDAR,
which is crucial for safe operation at higher speeds.
While detection past 40 m is not required in Year 2 of the
competition, integrating long-range radar into Artemis at
this stage ensures the car will be well prepared for future
challenges.

While the electrical and mechanical systems were fully
designed to support this sensor modality, procurement
issues delayed the arrival of the ARS 548 significantly,
and therefore the team decided not to implement it into
the software stack for Year 2. Therefore, this report
details the mechanical and electrical integration of the
radar, but does not include it in software architecture or
sensor fusion discussion.

2.2 SENSOR PLACEMENT
The Year 2 sensor placement strategy is largely similar to
Year 1. As detection of objects beside or behind the
vehicle is not required in Year 2, all sensors are mounted
oriented forwards to ensure critical areas in front of the
vehicle are covered by multiple redundant sensors.

Two notable changes were made from Year 1 to Year 2.
First, the mounting angle of the top LiDARs, previously
-100 relative to horizontal, was changed to -50. This was
done to prevent LiDAR points from falling on the hood of
the vehicle, which extends further compared to the body
of the perception cart. Moreover, it increases the density

of the point cloud at ranges slightly farther from the
vehicle. The bumper-mounted LiDAR ensures that there
are no blind spots immediately in front of the bumper,
where the top LiDARs would be occluded.

The second change was to switch from three
bumper-mounted radars to just one. This change was
made due to mechanical constraints detailed in
Section 3.2. While removing the two side radar
decreases the overall field of view, the 1200 FOV is still
sufficient for Year 2 competition requirements. The team
is investigating alternative radar mounting points for
future years. The top-down view of the sensors coverage
diagram is presented in Figure 3.

2.3 SENSOR INTEGRATION
As the cameras, LiDARs, and GNSS/INS all
communicate using TCP or UDP over Ethernet, it was
originally intended to connect all 9 sensors to a common
network switch, which would then connect to a single
Ethernet port on the compute platform. However, issues
encountered during development necessitated allocating
a unique network interface to each LiDAR. The final
configuration uses a Netgear M4300-16X switch for the 4
cameras and GNSS/INS. The switch connects to a 10 Gb
network interface on the compute platform, selected for
the high data throughput necessary for the cameras.
Each LiDAR connects to a single port of a quad-port
network interface card.

2.3.1 Time Synchronization The time synchronization
strategy was greatly simplified in Year 2 compared to the
Year 1 approach. The Lucid cameras, Cepton LiDARs,
and Continental radar all support Precision Time Protocol
(PTP) for synchronizing internal clocks. These sensors
all connect to the compute platform, which provides a
PTP grandmaster clock on each network interface. The
compute PTP clocks are synchronized to the system
clock, which is set by the Novatel GNSS receiver PPS
timestamps using gpsd. This network ensures that GPS
time is the source of truth and all sensor timestamps are
computed relative to the same timebase.

3 HARDWARE DESIGN AND MOUNTING

While preparing the mechanical platform for AutoDrive
Challenge II, several factors were prioritized such as
ease of assembly, precise sensor placement, and
weather protection. We have taken inspiration from the
design language of modern Level 4 autonomous
vehicles, and while some features are difficult to achieve
with our limited resources, we have aimed to make our
design as close to a deliverable product for the 2022 Bolt
EUV as possible. In Year 1, mechanical components
were designed with reusability in mind. Namely, the use
of standard t-slot framing, removable brackets, and
modular design structure allowed much of the previous
year’s mechanical structure to be transferred from the

3

perception cart, to the new vehicle. Our decision to reuse
much of the structure has proven to be both cost and
time-efficient since it minimizes the need for new
materials, and allows us to maintain consistency for other
sub-teams. As well, with the new vehicle platform, there
have been several opportunities for new challenges and
areas for mechanical innovation.

3.1 TOP SENSOR RACK MOUNTING
The main purpose of the top sensor platform is to offer a
stable and secure structure for the proper placement and
orientation of all primary sensors. These sensors include
four cameras, three LiDARs, two GPS antennas, one
GNSS/INS receiver, and a few peripheral devices. The
pentagonal top sensor rack was transferred from the
perception cart used in last year’s competition over to the
roof of the 2022 Chevrolet Bolt EUV, as illustrated in
Figure 4.

This top sensor platform was made from 45mm x 45mm
lightweight aluminum extrusions assembled with various
metal brackets, connector plates and standard hardware.
Aluminum extrusions offer several benefits, such as
lightweight yet strong properties, easily machinable and
greater flexibility in design, as extrusions can be easily
cut and assembled in various configurations. By using
aluminum extrusions, we have been able to create a
modular design that can be easily assembled and
disassembled, making it easier to replace or upgrade
individual components. This modularity also allows for
greater flexibility in testing different configurations and
sensor placements, which is critical for developing an
autonomous vehicle which may undergo several different
sensor variations. Furthermore, aluminum extrusion
construction is cost and time effective which allows the
team to fabricate and design with less manufacturing
time.

The top sensor platform consists of two levels, the main
and upper level. The primary level of the platform is
designed to protect sensitive camera sensors and the
GPS/IMU device from damage caused by rain or snow.

3x LiDARs 3x Wide-angle Cameras
1x Long-range Camera

2x GPS Antennas

1x GNSS/INS

6x Blue Lights

Figure 4: Top Sensor Rack Overview

The sensors are mounted on a stable 1/8" thick
sheet-metal surface, and water-jet clear PVC panels
were added to the walls and top to shield the sensors
from extreme weather conditions. The LiDARs and GPS
antennas are placed on the open upper level. This allows
the LiDAR sensors to have an unobstructed field of view.
As well, the two GPS antennas are placed 120 cm apart
on a single extrusion beam that spans across the back
side of the sensor rack.

In order to properly transfer the top sensor platform from
the pushcart to the vehicle, several adaptations had to be
made. First of all, a roof rack was designed using similar
45mm x 45mm aluminum extrusions which would allow
the top sensor platform to be easily attached. Using CAD
software, custom contoured feet were designed to fit the
rails of the vehicles roof and match the mounting points
for the vehicles roof rack. Using the vehicles intended
roof rack mounting points ensured a secure and stable fit.
To lower costs, the custom roof rack feet were designed
to be manufactured as a two-part setup which allowed us
to reduce the number of CNC milling operations in favour
of waterjet components. This approach significantly
reduced the cost of production while still ensuring
high-quality parts that meet our design specifications.

3.2 BUMPER SENSOR RACK MOUNTING
The purpose of the front bumper sensor is to mount
additional LiDAR and radar sensors to the front of the
vehicle for more robust sensing. The front bumper sensor
rack design was greatly modified from the proposed
design from Year 1 which described a one LiDAR and
three radar configuration. This was mainly due to
restrictions stating no additional hardware must protrude
from the front of the vehicle. Instead, the front bumper
sensor rack for Year 2 will focus on a one LiDAR and one
radar configuration of wider field-of-view. In order to
ensure no sensors protrude from the front of the vehicle,
the front bumper was removed and several designs were
brainstormed which employed a mounting solution on the
vehicles impact bar. These designs include 1) a plate
design which consists of a 3/4" aluminum plate with
machined holes for mounting a LiDAR and a radar

Crit
eria

W
eigh

t

Aluminum Plat
e Desig

n

Aluminum Ex
tru

sio
n (c

urve
d)

Aluminum Ex
tru

sio
n (st

rai
gh

t)

Simplicity (# parts) 2 4 2 3
Versatility (adapt to design changes) 1 2 4 3

Ease of manufacturing 2 4 2 3
Tolerances 3 4 2 3

Reliability 2 4 2 3
Maintenance 2 4 2 3

46 26 36
1 3 2

Design

Manufacturing

Totals
Rank

Performance

Figure 5: Pugh Chart assessing three bumper sensor rack
alternatives

4

1x LiDAR

1x Radar

Figure 6: Bumper sensor rack plate design accomodating
one LiDAR and one radar

beneath it, 2) a curved aluminum extrusion design which
would use 3 aluminum extrusions placed at an angle on
which to mount the LiDAR and radar sensors, and 3) an
aluminum extrusion design which employs a single
straight aluminum extrusions across the front of the
impact bar on which LiDAR and radar sensors would be
mounted. A Pugh decision matrix for these three
alternatives can be seen in Figure 5.

The plate design for the bumper sensor rack was chosen
for its low profile design and simple construction. The low
profile design ensured the sensors would not protrude
beyond the front of the vehicle. As well, the single piece
construction reduces possible assembly errors. The
team also acquired a new radar sensor with a 120
degree field-of-view. As this meets competition
requirements, the plate sensor mount was designed with
only one radar mount instead of the three-radar set up
proposed from Year 1. This was decided because
documentation for this sensor recommended that each
radar be placed minimum one meter apart, which would
be impossible to fit 3 of them on the impact bar alone. In
order to increase radar range in future years, additional
radars can be mounted on the side panels of the vehicle.

As seen in Figure 6, the final bumper sensor rack mount
consists of 3/4" aluminum which was water-jet, then CNC
milled. Profiles were milled on the reverse side of the
plate to allow radar mounting, as well as to
accommodate the existing vehicle components such as
the front support bar and car horn. The plate includes
mounting holes for both the Cepton’s P60 and X90
LiDAR sensors, which will allow for future compatibility if
the sensors are upgraded. The radar is mounted below
the LiDAR. It is also noted that the LiDAR sensors are
off-centered from the center line of the vehicle. This is
due to interference of the sensor cables with the vehicle’s
vertical front support bar and is accounted for during
sensor calibration.

3.3 EXTERNAL/INTERNAL BLUELIGHT MOUNTING

The external blue lights as seen in Figure 4, per
competition requirements, serve as a warning to others
around the vehicle when it is being operated under the
autonomous mode and they must be visible from at least
200 feet away in daylight conditions. Therefore, SAE
Class 1 certified blue lights are mounted to the roof with
two facing the front, two facing the back and one facing
each side for a total of six external blue lights. This
ensures 360-degree visibility of the blue lights regardless
of which side a person is viewing the vehicle. The blue
lights are mounted on the aluminum extrusions of the
roof rack, with custom made mounts. Additionally, a blue
LED strip was mounted to the interior of the vehicle,
using adhesive, so passengers are also able to see the
status of the blue lights that are synchronized with the
external ones.

3.4 SERVER AND ELECTRONICS RACK
The server rack houses the Intel server, and electronics
such as the REDARC Battery Management System
(BMS), REDARC Total Vehicle Management System
(TVMS), Cotek Inverter, Uninterrupted Power Supply
(UPS), and 12V Battery. The server rack is designed with
modularity and ease of access in mind. The server rack
is made from 30mm x 30mm aluminum extrusions which
allows the team to easily add additional mounts if
necessary.

The electronics rack, Figure 7, consists of 3 levels. The
first layer consists of a rectangular aluminum extrusion
layer covered with a PVC panel. Cutouts in the PVC
panel were water-jet for mounting and cable
management. This layer holds the REDARC Battery
Management System, and Contek Pure Sine Wave
Inverter. The second layer holds the Intel Server with
additional side brackets to secure the server and prevent
sliding. Additional side brackets were also installed to
hold the UPS. Finally, the third layer is intended for lighter
electronics such as switches and fuses which require
easy access. All three levels are supported by two
U-shaped vertical supports which allows each of the
levels to shift up or down depending on the accessibility
requirements of the electronic components. Also
mounted vertically is the REDARC TVMS to allow easy
access to fuses.

REDARC TVMS

Cotek Inverter

Intel Server

REDARC BMS

12V Battery

Figure 7: Three level server and electronics rack

5

The base of the server and electronics rack is secured by
two long 60mm x 60mm extrusions. These extrusions are
the exact length of the trunk and prevent the server rack
from sliding. Additionally, the extra height allows a
battery to be stored in the trunk area below the first level.

3.5 SENSOR CALIBRATION
Since each LiDAR and camera are mounted at a different
pose, sensor calibration is required to bring the data
collected from the multiple sensors into a unified frame of
reference. In this system, all other sensors are calibrated
with respect to the pose of the center top LiDAR. This
involves first aligning the left, right, and center bottom
LiDAR’s point clouds with the center top frame, then
computing the pose of each camera with respect to the
center top frame by observing each camera-LiDAR pair.
For example, the left camera’s field of view overelaps
with the left LiDAR, therefore its extrinsics are
determined using the left LiDAR’s point clouds.

3.5.1 LiDAR Extrinsics Calibration The purpose of
LiDAR to LiDAR extrinsics calibration is to determine the
relative poses (positions and orientations) of multiple
LiDAR sensors with respect to each other, in order to
accurately transform the point cloud data from each
sensor into a single, unified frame of reference.

Calibrating the left, right, and bottom LiDARs with respect
to the center top LiDAR allows for accurate point cloud
registration, enabling the creation of a comprehensive
and accurate 3D representation of the environment. We
choose to align with the center top LiDAR because it is
the only sensor that has overlap with all other LiDARs. In
order to perform this calibration, the Iterative Closest
Point (ICP) algorithm was used [3]. ICP is an iterative
method that minimizes the distance between
corresponding points in the overlapping regions of two
point clouds by iteratively transforming one point cloud to
align with the other. Once these relative poses were
found, they were injected into the driver layer of the
LiDARs such that the point clouds used for the
downstream perception exist in a unified frame of
reference, as shown in Figure 8, where each color
represents a LiDAR source such that a perfect alignment
can be visually confirmed by looking at the overlap
regions between each two LiDARs.

3.5.2 Camera Intrinsics Calibration Camera intrinsics
calibration is the process of determining the internal
parameters of a camera, such as the focal length,
principal point, and lens distortion coefficients. This
calibration is necessary in order to accurately map the 3D
world onto a 2D image, a required process for the object
detection, tracking, and camera-LiDAR sensor fusion.

To perform this calibration, a checkerboard pattern with
known dimensions is used as a target. By capturing
images of the checkerboard from different viewpoints, the

Figure 8: Aligned LiDAR Point Clouds After Calibration.
Red, white, green, and yellow points in the point cloud
correspond to data from the center top, center bottom, left,
and right LiDARs respectively.

algorithm can determine the camera parameters that
best transform the 3D world coordinates of the
checkerboard corners to their corresponding 2D image
coordinates. The intrinsic camera parameters are then
estimated using a least-squares optimization approach
through MATLAB’s Single Camera Calibrator. Once the
camera intrinsics are calibrated, the image can be
undistorted and rectified, allowing for accurate
measurements and mapping of the 3D world onto the 2D
image.

The camera intrinsics matrix K is given by

K “

»

–

fx s cx
0 fy cy
0 0 1

fi

fl

where fx and fy are the focal lengths in pixels, s is the
skew coefficient, and cx and cy are the principal point
coordinates.

This algorithm also estimates the distortion parameters
are the parameters that describe the deviation of the lens
from an ideal pinhole camera model. There are two types
of distortion: radial and tangential. Radial distortion
causes straight lines to appear curved, while tangential
distortion causes the image to appear tilted.

3.5.3 Camera Extrinsics Calibration Camera
extrinsics calibration is the process of determining the 3D
transformation between a camera and a world coordinate
system, which is necessary for projecting world points
captured by the LiDAR onto each camera’s image frame.

Checkerboard-based calibration was also used for this
calibration. In this approach, a checkerboard pattern is
placed in the field of view of the camera and
corresponding LiDAR, and images and point clouds of

6

Figure 9: Static scene with 3D to 2D projection using
calibrated camera extrinsics, showing camera image with
corresponding LiDAR point cloud projected onto it.

the checkerboard are captured from different angles by
rotating the checkerboard in the three rotational axes.
Using the detected corner coordinates in the image and
their corresponding LiDAR coordinates, the camera
extrinsics can be estimated by finding the transformation
using the Perspective-n-Point (PnP) algorithm. The
process was implemented using MATLAB’s LiDAR
Camera Calibrator. Once the extrinsics were estimated,
they could be used along with the intrinsics to project 3D
LiDAR points onto the image, as shown in Figure 9.

The camera extrinsics matrix is given by

E “ rR|ts “

»

–

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

fi

fl

where R is a 3 ˆ 3 rotation matrix that describes the
orientation of the camera in the world coordinate system,
t is a 3 ˆ 1 translation vector that describes the position
of the camera in the world coordinate system, and rR|ts

is the camera extrinsics matrix. The individual elements
rij and ti represent the rotation and translation
components of the extrinsics matrix, respectively.

To project points from 3D to 2D, the following perspective
projection equation is used
s

“

u v 1
‰T

“ K ¨ E ¨
“

X Y Z 1
‰T where pX,Y, Zq

are the coordinates of a 3D point in the world coordinate
system, pu, vq are the corresponding 2D coordinates of
the point in the image plane of the camera, s is a scaling
factor, and matrices K and E are the intrinsics and
extrinsics we obtained earlier.

Figure 9 shows that after careful camera-LiDAR
calibration, the LiDAR point cloud when projected onto
the corresponding camera image plane will match
perfectly with the 2D image pixels. The alignment can be
best observed on the foreground objects in the scene,
namely the pedestrian dummy, stop sign, barrels and the
vehicle parked on the right.

4 VEHICLE ELECTRICAL DESIGN

The design philosophy of the electrical components is to
ensure the highest standards of electrical safety and
reliability while keeping power usage to a minimum. The
team has chosen the REDARC System as the central
electrical management system due to its ability to
efficiently distribute power to each component while
maintaining control over the system. The team has also
taken measures to reduce power usage, which not only
reduces the carbon footprint but also prolonging battery
life.

The REDARC system is made up of two components, the
battery management system (BMS) and Redivision total
vehicle management system (TVMS). The BMS
manages not only the charge of our secondary battery
which is located in the trunk of the vehicle, but also the
power draw between the provided 12V vehicle battery
located in the front and our secondary battery. The
Redivsion TVMS is a digital relay fuse box that manages
the power distribution to all our 12 VDC sensors. The
TVMS powers the GPS, LiDARs, radar and blue lights,
we are able to toggle power to our sensors using
REDARC display located beside the driver seat. To
power our AC devices, such as an Uninterruptible Power
Supply (UPS) and a network switch, we use the Cotek
200 0W inverter. The UPS provides power stability while
switch between power draw loads. This inverter converts
our 12 VDC battery voltage into 120 VAC at 60 Hz.
Figure 10 shows the electrical system schematic of the
vehicle and Figure 11 is the view of our electrical system
from the back trunk.

Table 1: Measured Power Consumption of Electrical
System

Load Device No. of
Devices

Voltage
Requirements (V)

Power
Consumption (W)

Computer 1 110V 500
GPS 1 12V Automotive 5
Radar 1 12V Automotive 12
Camera 4 12V Regulated 22
LiDAR 4 12V Regulated 36
Monitor 1 110V 15
Network 1 110V 41
Blue lights - 12V 32
Total 663

Power consumption for this year was determined through
measurements using REDARC system and a summary
of average power consumption can be found in Table 1.
To account for the vehicle’s power consumption of 663 W,
our vehicle’s internal battery can supply a maximum of
1200 W, while our secondary battery can supply a total of
2,400 W of power. Thus our vehicle has excess of 2,937
W to spare, which opens the door for future sensor
expansion and possible cooling.

4.1 CAN BUS SYSTEM
Controller area network (CAN) bus is a communication

7

Figure 10: Power Distribution System Diagram

protocol used in vehicles and machines to enable
microcontrollers and devices to communicate with each
other. The Bolt EUV has an ODBII breakout harness
located to front passenger side which interfaces with
vehicles CAN Buses. In order for the CAN Bus signals to
reach the server, a custom harness was constructed to
connect the front passenger side to the rear of the
vehicle. The CAN Bus wires were made using 20 AWG
single core copper, the pairs were twisted using a electric
drill, and custom ODBII breakout connectors were made
to the J1962 and CGM pinouts. The CAN Bus harness is
made up of four separate CAN Bus: high-speed (HS),
chassis expansion (CE), low speed (LS), and scoring
(SC). The CAN Bus channels HS, CE, and LS are used
to control the vehicle, while SC outputs competition
scoring data and autonomous vehicle state.

4.2 BLUELIGHT CONTROLLER
The bluelight controller controls internal and external
blue lights of the vehicle. These safety lights indicate the
state of the autonomous vehicle: flashing indicates non
active CAN Bus communication between vehicle and the
server, light off indicates the vehicle is in standby mode
with an active CAN Bus interface, and solid lights indicate

REDARC BMS REDARC TVMS Cotek Inverter12V Battery

UPS

NetGear Switch

Intel
Server

Bluelight
MCU

Figure 11: The vehicle power management system wiring.

Figure 12: Top: The bluelight controller board; Bottom:
12V->5V Buck converter board.

that the car is currently in active autonomous mode. The
bluelights are controlled by the scoring CAN Bus
interface. A Teensy 4.1 microcontroller unit (MCU) is
used to interface with the Scoring CAN Bus to detect
transitions in autonomous vehicle state.

Figure 12 depicts the boards responsible for powering
and controlling the bluelights. The printed circuit board
(PCB) above is the bluelight controller with Teensy MCU
and the PCB below is a buck converter, which converts
automotive 12 V into smooth 5 V for the Teensy. A switch
was added to the buck-convert to toggle the power
supply to the bluelights. The bluelight controller board
makes use of relays to switch the bluelights on and off.
Our vehicle uses Whelen ION Series bluelight which are
Class 1 SAE vehicle lights. These lights require specific
signal-timing which are controlled by the relays.

4.3 ELECTRICAL SAFETY
Several electrical safety issues need to be addressed, to

8

ensure our team’s safety and the safety of participants in
the competition. These can be broken down into four
different categories:

1) Battery Safety: Battery systems must be designed and
built to be safe and reliable to prevent issues such as
overheating, short circuits and other fault-causing fires
and other hazards.

2) Electromagnetic Interference (EMI): The vehicle’s
electronic motors and power inverters generate EMI
which produces unwanted electrical noise or interference
on sensors, computing platforms and communication
channels (e.g. CAN Bus).

3) Electrical System Reliability: Power disruptions must
be prevented during normal vehicle operation.
Additionally they are designed and built to handle various
rough roads and temperature conditions.

4) Human Operation Error: Safety measures must be in
place to prevent unintentional operator misuse of the
vehicle.

Our vehicle battery system was designed and build to
balance the power draw between the provided 12 V
battery and the rear 12 V trunk auxiliary battery. As a
result, we are able to prevent overheating during vehicle
operation and charging. The battery management
system by REDARC has temperature and voltage
sensors which interface with the battery providing
important data on battery capacity and health. By
configuring the REDARC settings we are able to control
the rate of discharge between batteries and provide an
optimal power draw between batteries during vehicle
operation. The battery sensor enables our team to
monitor the capacity, ensuring we do not fully discharge
and damage the battery. In addition, we have configured
alarms to indicate low battery levels. Lastly, we have
inline current fuses specified based on a maximum
operating amperage limit, which are placed near the
batteries to prevent short circuits.

To minimize the effect of EMF interface on our power
system, we incorporated a number of design strategies.
While designing and building our high current power
distribution system in the bottom truck, we ensured that
all power lines were less than 1 meter in total length and
we kept the positive 12 V lines and their corresponding
ground cables side by side. Additionally, we placed the
DC-to-AC inverter away from the key power systems and
the server to prevent interference. To eliminate crosstalk
interference in the CAN Bus system we twisted our CAN
Bus wire pairs in a counter-clockwise direction with
exception of cable connectors areas.

To ensure our vehicle’s reliability, we spec our copper
wires to ensure we are using the proper gauge. We
mounted all electrical components to the t-extrusions of
the server rack. The auxiliary battery in the truck is tied

down using a buckle tie-down. Vibration rubber dampers
were added to the server rack and the battery to prevent
damage from vehicle vibrations. Lastly, all power
connections for the sensors use vehicle-rated power
connectors, such as the Deutsch DT series connectors.

To prevent operator error or misuse we configured
REDARC setting to provide both audio and visual alerts
to the driver, to notify of any power failures or low battery
status. We can also use the REDARC system to ensure
the power system has been safely disabled. Moreover,
during any vehicle operation, we actively monitor the
current draws of various vehicle sensors to determine
possible power failures.

5 SOFTWARE ARCHITECTURE

Figure 13 depicts the overall software architecture for
Artemis. The system was designed with a focus on
modularity; all major components are implemented as
separate processes using the Robot Operating System 2
(ROS2) framework and communicate using message
passing. This isolates the internal implementation details
of each process from the public interface and allows for
easier integration, as each process only needs to be
aware of the message types that it must send and
receive.

5.1 SUBSYSTEM OVERVIEW
In this section, we provide a high-level overview of each
software subsystem. Sections 6, and 7 outline the
perception systems and planning and control systems in
more detail, respectively.

5.1.1 Driver Layer The driver layer is responsible for
direct communication with the sensor suite. The primary
responsibility of each driver is to convert data retrieved
from each sensor into the message formats expected by
downstream modules.

5.1.2 Detection Layer The detection layer comprises
5 distinct detectors. The lane detector consumes camera
images and detects both lane lines and stoplines. Object
detection is delegated to the remaining 4 detectors.
Three of these operate on camera images and perform
2D object detection (2DOD) in image coordinates. Traffic
light detection, static object detection (signs, barrels,
barricades), and dynamic object detection (car,
pedestrian, deer) are performed by separate detectors.
The remaining detector operates on LiDAR point clouds
and performs 3D object detection (3DOD) in the sensor
frame.

We chose to adopt a late fusion strategy for our
perception stack, where detectors operate on one sensor
modality only and detections are fused at a later stage.
While early fusion systems that perform detection on
multiple modalities simultaneously can sometimes

9

GNSS/INS
Driver

Camera
Driver

LiDAR
Driver

Lane
Detection

Dynamic Obj.
Detection

Traffic Light
Detection

Segmentation
& Clustering

Map
Database

Traffic Light
Tracker

Multi-Object
Tracker

Localization

Behavior
Planning

Global
Planning

Local
Planning

Velocity
Profile

Controller

Scoring
Interface

Vehicle
Interface

Driver Layer Detection
Layer

Tracking
Layer PlanningMapping &

Localization Control

Sub-System Color Legend

CAN
Interface

sm/Image

sm/PointCloud2

am/Detection2D

am/Detection2D

am/Detection3D am/Tracking3D

ROS2 Message Type

am/LaneDetection

am/Detection2D

am/StoplineDetection
gm/TransformStamped

am/Trajectory am/ControllerCmd

am = autoronto_msgs
gm = geometry_msgs

sm = sensor_msgs

Process Health
Monitor(all processes)

am/ProcessHealth am/SystemHealth

Static Obj.
Detection

am/Detection2D

Safety

Figure 13: Artemis software architecture

achieve higher performance, the advantages of late
fusion are numerous. This approach is more modular by
default, allowing different image and LiDAR detectors to
be developed, evaluated, and integrated independently.

5.1.3 Mapping and Localization The localization
subsystem is responsible for publishing corrections to the
received GNSS/INS pose in order to ensure accurate
reporting of the vehicle position relative to the map. The
Year 2 Artemis software stack does not include an
operational localizer; we assume the correctness of the
GNSS/INS pose and feed this estimate forward to
downstream systems. The modular architectural design
facilitates the easy implementation of a localizer; no
downstream systems would require modification, as they
would automatically begin using the more accurate
estimated pose. Localizer corrections, along with all other
frame transformations, are published using the ROS2 tf2
library. This library enables easy lookup of transformation
matrices between any two frames in the transform tree.

5.1.4 Tracking Layer The tracking layer is responsible
for fusing detections from multiple detectors over time to
produce smooth, accurate estimates of static and
dynamic object states. This layer comprises two
subsystems: the multi-object tracker and the traffic light
tracker. Traffic lights are processed separately due to the
additional logic required for determining light states.

The multi-object tracker consumes detections from the
2D and 3D object detectors, associates them with each
other and with existing object tracks, and performs track
updates for each object accordingly. The output of the
tracker is a set of object tracks, comprising the 3D
position, orientation, velocity, dimensions, and class
category of each object in the scene. These tracks are
expected to remain consistent over time to facilitate
reliable motion planning.

The traffic light handling pipeline is responsible for
performing localization and state estimation of traffic
lights. This module serves three purposes: 1) associate
each traffic light detection with a mapped traffic light and
a set of controlled lanes, 2) track traffic lights over time to
refine class estimates and detect flashing state of the
lights, 3) reject spurious or incorrect detections. This is
important because noisy or incorrect output can cause
abrupt and dangerous autonomous driving behaviour. To
address this issue, the traffic light handling pipeline uses
multiple sensor modalities and probabilistic priors to
improve perception accuracy.

5.1.5 Planning The motion planning stack is
responsible for determining, given the states of the ego
vehicle and all other detected objects, the path that the
ego should follow. This is implemented by three different
hierarchical planners, each responsible for planning
motion at a different level of granularity. The global
planner determines, given the start position and goal
position, the sequence of lane segments that the vehicle
should traverse. The local planner generates a
kinematically feasible path that routes around obstacles.
The behavior planner coordinates between global and
local planners, determining vehicle behaviors like
reacting to traffic lights, stopping at signs, and processing
obstacles. It oversees high-level management in
Intersection and Highway challenges, ensuring safe and
legal navigation.

5.1.6 Control The control subsystem comprises two
components: the velocity profile generator and the
controller. The velocity profile takes in the generated
trajectory and produces a sequence of target velocities
for all path points that respect the speed limits as well as
limits based on road geometry and vehicle dynamics.
The controller is responsible for translating the plan into
the low-level commands used by the vehicle: axle torque,

10

deceleration, and steering wheel angle. This is further
decoupled into lateral control (ensuring the vehicle
remains in the center of the lane) and longitudinal control
(ensuring the vehicle travels forward at the desired
speed).

5.1.7 CAN Interface The CAN interface processes
are responsible for interfacing with the vehicle and
scoring CAN buses. The scoring interface reports all
dynamic challenge information (lane detections, object
detections) over the scoring CAN, while the vehicle
interface handles all other interface tasks: relaying
controller commands, reporting back the vehicle states,
and implementing the state machines required for
autonomous control.

5.1.8 Safety The safety subsystem comprises
processes which serve to monitor the integrity of the
software stack. While this system does not directly
perform perception, planning, or control functionality, it
serves a critical role in detecting and handling upstream
failure conditions that may result in degraded driving
performance.

The safety system is designed around per-process
heartbeat signals. Every process in the system is
expected to output a pulse: a periodic process health
message indicating the process status (either "healthy"
or "unhealthy"). A process should pulse healthy if it is
operating nominally: all inputs are provided, all outputs
are being published at the desired rate. Conversely, if a
process is missing inputs or is unable to produce the
nominal output, it should pulse unhealthy and indicate
the reason.

The process health monitor is responsible for
aggregating all process heartbeats into an overall system
health message. The system as a whole is considered
healthy if every process is in the healthy state. As a
non-functioning process may simply freeze rather than
correctly pulsing unhealthy, the process health monitor
additionally maintains per-process watchdog timers. If a
process fails to send a heartbeat signal within the
configured timeout, it is automatically marked as
unhealthy until it resumes sending healthy pulses. This
allows the system to automatically recognize when an
upstream process has failed rather than allowing failures
to propagate undetected into downstream processes.
The system health message is processed by the vehicle
interface and used as an autonomy state check - if the
system state is unhealthy, the vehicle will transition out of
autonomy and will be prevented from resuming
autonomous control until the system becomes healthy
again.

6 SENSOR FUSION

In this section, we describe how Artemis leverages its
various onboard sensors to perceive and understand its
surroundings. Sensor Fusion is a concept centered
around aggregating perception information across
multiple sensor modalities. As introduced earlier, Artemis
employs a late fusion strategy for our perception stack,
which means all detectors process data in their own
modality first and are then fused to corroborate each
other, resulting in an improved detection robustness. It is
both a computer vision technique, and more important, a
safety feature to mitigate single sensor failure.

As such, the rest of the section starts with 2D and 3D
Object Detection on their own, and then provide details of
how these detection results, together with other GPS and
High Definition (HD) Map data, are fused to establish
object tracks, handle traffic light recognition, and identify
lanes and limit lines for the downstream route planning
module.

6.1 2D OBJECT DETECTION

6.1.1 Deep Learning Model This year, all 2D object
detection tasks used a pure machine learning approach.
Several models were considered including YOLOv3,
YOLOv5, YOLOv8, YOLOX, and NanoDet. The decision
was made to use YOLOv5 due to its ease of
implementation as we already had the model architecture
and training pipeline setup from the previous year. As
well, YOLOv5 provides comparable performance with the
current state-of-the-art in terms of accuracy and
inference speed, as analyzed in Figure 14.

After choosing the YOLOv5 model, we experimented with
different model sizes including nano, small, medium, and
large. While the Year 1 stack used models of different
sizes and input resolutions, we opted to reduce all Year 2
models to the nano size for faster inference while still
achieving similar accuracy. With a smaller model, we
increased the input image resolution to 1600x1088 which
provided an increased detection range of 20 m to 30 m
and for the wide-angle cameras and 40 to 65 m for the

Table x. Pugh chart for <design component> selection.

Crit
eria

W
eigh

t

YOLO
v3

YOLO
X

YOLO
v5

YOLO
v8

NanoDet

Crit
eria

W
eigh

t

YOLO
v3

YOLO
X

YOLO
v5

YOLO
v8

NanoDet

Principal Limitations Principal Limitations

Reported model performance 3 4 5 5 5 3 Reported model performance 3 4 5 5 5 3

Reported model runtime 1 3 4 4 4 4 Reported model runtime 1 3 4 4 4 4

Tested model performance 3 4 4 4 5 3 Tested model performance 3 4 4 4 5 3

Tested model runtime 2 3 3 3 3 5 Tested model runtime 2 3 3 3 3 5

Model size 1 3 3 3 3 4 Model size 1 3 3 3 3 4

Ease of Implementation 3 3 3 5 3 5 Ease of Implementation 3 3 3 5 3 5

License Permissions 0 2 5 2 2 5 License Permissions 0 2 5 2 2 5

Totals 45 49 55 52 51 Totals 45 49 55 52 51

Rank 5 4 1 2 3 Rank 5 4 1 2 3

* feel free to change any number in this pugh chart for your own design selection Figure 14: Pugh matrix for deciding the network
architecture for 2D OD.

11

Crit
eria

W
eigh

t

4 M
odels

3 M
odels

2 M
odels

1 M
odel

Principal Limitations

Tested model performance 3 5 5 3 2

Tested model runtime 2 2 3 4 5

Model size 1 2 3 4 5

Ease of Implementation 3 5 5 3 2

Totals 36 39 30 27

Rank 2 1 3 4

Figure 15: Pugh matrix for deciding the number of models
to split up the 2D OD detection tasks.

long-range camera. To reduce redundant computations,
the deer model was merged with the car/pedestrian
model and new obstacles were added to the model with
traffic signs. This trade-off is shown in Figure 15 and the
final implementation is shown in Table 2 uses three
models: lights (traffic and railroad), dynamic objects
(pedestrians, vehicles, and deer), and static objects
(signs, barrels, and barricades).

To improve performance and meet competition
requirements, we performed extensive data inventory,
collection, and labeling of new data. This included
revising our traffic light classes and adding classes for
three Right Turn Only signs, three Left Turn Only signs,
railroad crossing signs, railroad lights, barrels, and
barricades. In total, we added 67K new training labels,
54K new validation labels, and 21 curated competition
test set videos, resulting in a total of 1.4M training and
0.3M validation labels which is summarized in Table 3.

6.1.2 Deep Learning Inference Dedicated deep
learning inference architecture is required in order to
efficiently run the three 2D OD models across multiple
cameras with limited computational resources and
integrate with downstream tasks. Multiple optimizations
were taken to best utilize the resources and achieve the

Table 2: Model summary, where all models use YOLOv5
nano with 1600x1088 input resolution.

Model Network Cameras Classes

Dynamic Obj. YOLOv5-n-1600 LW, CW, RW Car, Ped, Deer
Static Obj. YOLOv5-n-1600 LW, CW, RW 2xObstacle, 15xSpeed, 8xSign

Lights YOLOv5-n-1600 CW, LR 4x3L, 5x4L, 9x5L, 2xRailL

Table 3: Training and validation data set samples.

Classes Samples

3 Light 30.9K
4 Light 13.1K
5 Light 18.7K

Railroad Light 8.2K
Speed Sign 47.2K

Stop / Yield / Railroad 18.2 K
Barrel / Barricade 8.5K

Turn Only 11.2K
Vehicle / Pedestrian 647K

Deer 2.7K

Other TaskInference

Other Task

Inference

Inference Request

Default

Asynchronous

Time

Figure 16: Illustrative comparison between default and
asynchronous inference

best performance. The chosen inference framework is
OpenVINO[4], as it provides a very streamlined
integration with the given Intel GPU.

Inference uses asynchronous inference to optimize the
usage of limited computational resources available. As
shown in Figure 16, the default scheme for performing
inference waits for the inference to be completed before
other code can be executed, which is referred to as
blocking. In contrast, the asynchronous API (async API)
that is provided by OpenVINO allows for other code to be
executed while the inference is being performed on the
GPU, with very small overhead for invoking the inference
request, and is referred to as non-blocking. This allows
the program to perform other tasks such as receiving and
sending messages, and post processing of the data,
while waiting for the inference to be completed. Overall,
the usage of async API proved to be crucial in the
implementation to prevent dropping incoming messages,
faster throughput speed, and easy integration with ROS2
framework used by the vehicle.

Figure 17 illustrates the system architecture for the
inference pipeline. The input image and its ROS2 topic
name are compiled together to form a new object called
Task, which is directly used to invoke an asynchronous
inference request. The program immediately goes to the
post-processing step where it checks the output queue
for any outputs that need to be processed and published
for the downstream tasks. If the output queue is empty, it
waits until a new output is filled. Meanwhile, the inference
request performs inference and appends the output to
the queue once completed. To run all three 2D OD
models there are three independent pipelines that are

Input Image Topic Name

Task i

Inference

Message i-6

Post
Processing

Output i-6
Output i-4
Output i-3

Model Output Queue

.

.

Pop

Asynchronous Request

Asynchronous Fill

Output i-6{ {
 nodeith

… …

Figure 17: Inference pipeline architecture

12

Figure 18: 2D OD inference results for static objects (left), dynamic objects (middle), and traffic lights (right) networks.

run, each with different models for dynamic objects, static
objects, and traffic lights. Images from different cameras
are entered sequentially into the pipeline as they arrive.

6.1.3 Results The throughput of the 2D OD inference
pipeline is highlighted in Table 4 showing all inference
pipelines running together on all cameras simultaneously.
The entries of the table are the mean and standard
deviation of the throughout frequency in Hz, evaluated
with 8 different test data. Different models only run on 2
or 3 of the 4 cameras depending on the required
detection coverage area, hence some of the entries are
not applicable and indicated by N/A. The results show
that when all model-camera combinations are run, the
inference pipeline can consistently process image data
over 10 Hz.

Table 4: Inference throughput in frames per second, Hz,
mean ˘ std. deviation

Detection Type Center Long Range Center Wide Left Wide Right Wide

Dynamic Objects N/A 11.46 ˘ 0.71 11.98 ˘ 0.70 11.98 ˘ 0.70
Static Objects N/A 11.84 ˘ 1.03 11.66 ˘ 0.88 12.23 ˘ 0.77
Traffic Lights 11.62 ˘ 0.89 10.54 ˘ 0.94 N/A N/A

Table 5: Validation performance for 2D OD models.

Class mAP (%)

All 79
3 Light 72
4 Light 83
5 Light 86

Railroad Light 72
Car 45

Pedestrian 37
Deer 76

Speed Sign 85
Yield/Stop Sign 75
Turn Only Sign 80
Railroad Sign 87

Barrel/Barricade 85

The validation performance results of 2D OD are shown
in Table 5. The validation dataset includes over 10,000
images that were labeled by our team and not seen by
the model in training. The metric used to assess
performance is Average Precision (AP) on the labelled
validation set across all classes. Our model achieves
96% AP50, with a true positive defined as 0.5
intersection over union with the ground truth labels,
which should be representative of competition

performance. The model was also tested qualitatively on
a larger test set that covers a broader range of difficult
scenes, such as is shown in Figure 18.

6.2 3D OBJECT DETECTION
The 3D object detection module takes a ROS2 point
cloud message published by each LiDAR sensor and
outputs accurate bounding boxes and localization for the
objects of interest within 50 meters in range. This module
is responsible for detecting barrels, barricades, traffic
signs, pedestrians and deer. The pipeline is shown in
Figure 19. First, we use the Himmelsbach ground plane
removal algorithm [5] to remove LiDAR points belonging
to the ground. Second, 3D Euclidean clustering
generates 3D bounding boxes. Lastly, the detections are
classified according to the dimensions of the bounding
boxes and the average intensity of the points in the
bounding box. The output is a list of 3D bounding boxes
rx, y, z, l, w, h, θ, type, confidence, ρsT , where px, y, zq are
3D object centroid location, pl, w, hq are length, width and
height, θ for object’s yaw angle on the x´ y plane with
respect to the ego vehicle. confidence for the
classification is calculated according to the shape of the
bounding box and ρ, which represents the average
intensity of all LiDAR points within each bounding box.

Point Cloud Box Filter

Himmelsbach Ground
Plane Removal

Sensor
Preprocessor

Detection
Layer

Sub-System Color LegendInput

Output

3D Euclidean Clustering Intensity-Based
Classification 3D Boxes

Figure 19: 3D object detection pipeline architecture.

6.2.1 Ground Plane Segmentation Ground plane
removal aims to increase the accuracy of 3D Euclidean
clustering and accelerate the runtime by reducing the
number of points processed during clustering. The Pugh
chart in Figure 20 shows the main factors we considered
in our design decision. Compared to RANSAC [6],
Himmelsbach [5] ground plane removal algorithm is able
to handle sloped terrains and achieve better ground
plane segmentation performance. The top row of Figure
22 shows the results of ground plane removal for all 4
LiDARs. Because our approach runs in real-time on CPU

13

and is not a machine learning-based model, we have
chosen it for practicality and tunability.

Crit
eria

W
eigh

t

RANSA
C

Him
m

elsb
ach

Crit
eria

W
eigh

t

3D Eucli
dean C

lu
ste

rin
g

3D Eucli
dean

In
te

nsit
y-

Base
d

Clu
ste

rin
g

3D Eucli
dean

Clu
ste

rin
g +

In
te

nsit
y-

Base
d

Class
ifi

ca
tio

n

Cente
rP

oin
t

Implementation Implementation

In need of data annotation 2 0 0
In need of data

annotation
2 0 0 0 -1

GPU dependency 1 0 0 GPU dependency 1 0 0 0 -1

Tunability 2 2 6 Tunability 2 2 1 3 0

Performance Performance

CPU runtime 1 3 2 CPU runtime 1 3 2 3 1

Ability to handle uneven ground 2 1 4
Object localization

performance
2 3 2 3 4

Ground Plane Segmentation Performance 2 2 4
Object classification

performance
2 2 3 4 4

Totals 13 30 Totals 10 8 13 7

Rank 2 1 Rank 2 3 1 4

Figure 20: Pugh chart for ground plane removal.

6.2.2 3D Euclidean Clustering In Year 1, we explored
ML-based 3D object detection methods, namely
CenterPoint [7] and PointPillars [8]. Since there aren’t
publicly available datasets for Cepton LiDAR, we used
the traditional 3D Euclidean clustering. This year, we
re-evaluated our options. For the same reason, the lack
of annotated data for Cepton LiDAR, we focused on
improving our 3D Euclidean clustering method, especially
by leveraging the intensity channel of the point cloud.

The Pugh chart in Figure 21 shows the three methods
we implemented and compared. Our final
implementation is the third method "3D Euclidean
Clustering + Intensity-Based Classification", which
outperforms the baseline method "3D Euclidean
Clustering" that was the design in Year 1.

Since the intensity of 3D points is higher for reflective
objects like barrels, barricades and traffic signs, the
second method, "3D Euclidean intensity-based
clustering", aims to use the intensity of each 3D point to
better distinguish these objects from background objects,
pedestrians and deer. The input point cloud P is first
divided into two point clouds based on an intensity
threshold, which results in an increase in the
computational cost. Then the baseline "3D Euclidean
Clustering" is performed on each point cloud separately.
The two clustering results are concatenated at the end.
However, this method performs poorer in object
clustering and localization than the baseline because the
intensity of the points turns out to be highly dependent on
the viewing angles and lighting conditions. For example,
the first step of dividing P into two point clouds based on
a fixed intensity threshold splits the original point cloud of
a barrel into two separate smaller point clouds, making
clustering more challenging.

Therefore, instead of incorporating intensity-related
information in the clustering algorithm, we only use it for

Crit
eria

W
eigh

t

RANSA
C

Him
m

elsb
ach

Crit
eria

W
eigh

t

3D Eucli
dean C

lu
ste

rin
g

3D Eucli
dean In

te
nsit

y-

Base
d C

lu
ste

rin
g

3D Eucli
dean C

lu
ste

rin
g +

In
te

nsit
y-

Base
d

Class
ifi

ca
tio

n

Cente
rP

oin
t

Implementation Implementation

In need of data annotation 2 0 0
In need of data

annotation
2 0 0 0 -1

GPU dependency 1 0 0 GPU dependency 1 0 0 0 -1

Tunability 2 2 6 Tunability 2 2 1 3 0

Performance Performance

CPU runtime 1 3 2 CPU runtime 1 3 2 3 1

Ability to handle uneven ground 2 1 4
Object localization

performance
2 3 2 3 4

Ground Plane Segmentation Performance 2 2 4
Object classification

performance
2 2 3 4 4

Totals 13 30 Totals 10 8 13 7

Rank 2 1 Rank 2 3 1 4

Figure 21: Pugh chart for 3D clustering.

classification, which constitutes the third method, "3D
Euclidean Clustering + Intensity-Based Classification".
On top of the baseline, we give higher confidence to
classes "barrel", "barricade" and "sign" if the average
intensity of the 3D points inside a bounding box is higher
than a set threshold t. Figure 22 shows the clustering
and classification of the traffic sign, barrels, car and
pedestrian in the scene. Whereas the baseline and "3D
Euclidean Intensity-Based Clustering" might confuse the
sign for the pedestrian, the method of our choice is able
to better distinguish between them because the painting
of signs make them more reflective than a pedestrian. As
shown in the Pugh chart 21, this method increases the
object classification performance compared to the
previous attempts, which is an improvement over our
Year 1 baseline approach.

In summary, our LiDAR-based 3D object detection
pipeline uses the Himmelsbach ground plane removal
algorithm to reduce noise and accelerate the subsequent
3D Euclidean clustering. Our pipeline produces accurate
object localization and incorporates intensity-related
information for improved object classification.

Figure 22: 3D object detection results illustration. Top
left: original LiDAR point clouds from all 4 LiDARs. Top
right: detections performed on ground plane removed
point clouds. Bottom: scene setup.

14

6.3 OBJECT TRACKING BY FUSION
To stabilize the predicted positions, sizes, and types of
the objects in the scene, an object tracking system that
fuses cameras and LiDARs is used. This tracking is
performed on the dynamic objects (vehicles, pedestrians,
animals), static objects (barriers, barricades) and traffic
signs. Traffic lights are handled by a separate system
(see Section 6.4) because they are not detected by the
LiDARs and the light states are time dependent. The
objective of the tracking system is to fuse the object
detections from the 2D and 3D detectors into a unified
and processed set of objects of interest in the scene, as
illustrated in the architecture in Figure 23.

Detection Layer Tracking Layer Planning

Sub-System Color Legend

aUToTrack Pipeline

Object Tracking

3D Detection
with DLA

 2D Detection
with DLA

3D Hungarian
Association

2D Hungarian
Association

HMM
Filtering

Behaviour
Planner

Object Detection

2D Object Detections

3D Object Detections

3D Kalman
Update

Motion
Prediction

HMM
Filtering

Track
Maintenance

Maintained Tracks

3D to 2D
projection

Figure 23: aUToTrackV3 system architecture.

The key improvement to aUToTrack [9] from Year 1 is the
handling of detections arriving out of order. Out-of-order
detections occur due to the LiDAR sensors being
triggered asynchronously, resulting in detections
captured earlier in time potentially arriving later than
another detection that arrived earlier (see Figure 24).
This can cause issues with the Kalman filter smoothing,
since the object positions are time dependent and
Kalman filter updates are required to occur in
monotonically increasing time order.

Time

Detection Time

Arrival Time

D
e

t
A

D
e

t
B

D
e

t
B

D
e

t
A

Figure 24: Example of out-of-order detection arrival issue.
"Det A" and "Det B" refer to detections captured by
Sensor A and Sensor B respectively, such as an individual
camera or LiDAR.

6.3.1 Tracker Rollback To handle the issue of
out-of-order arrivals, a tracking rollback system is
implemented. This method was selected over the
alternatives of discarding detections and using the
method described in [10] based on the Pugh chart shown
in Figure 25. A detection queue maintains a number of
detections that have arrived in the order that they were
captured. A tracked objects queue is implemented to
retain the history of the tracked objects in a scene at a

Crit
eria

W
eigh

t

Dro
p d

ete
ct

io
ns

Tr
ack

er R
ollb

ack

Out o
f O

rd
er

Kalm
an

Fil
te

rin
g

Simplicty

Ease of development 1 1 0 -1

Algorithm simplicity 2 2 1 0

Accuracy

Accuracy of localization 3 -2 1 1

Efficiency

Time complexity 2 1 -1 0

Totals 1 3 2

Rank 3 1 2

Figure 25: Pugh chart to determine how to handle
out-of-order detections in the tracker.

previous point in time. When a new detection arrives, it is
inserted into its corresponding place in the detection
queue. The tracked objects are then reset, or "rolled
back" to the corresponding point in time using the tracked
objects queue. Lastly, the tracker recomputes the tracker
updates (Section 6.3.2) using detections from the
detection queue, repopulating the rolled back portion of
the tracked object queue up to the latest detection in the
detection queue.

6.3.2 Tracker update To update the tracked objects,
the tracker takes in both 2D object detections from the
cameras and 3D object detections from the LiDARs at
their respective rates. An overview of the tracker update
algorithm can be found in Figure 23 First, each tracked
object’s position estimate is updated to the timestamp of
the detection used in the update using a velocity motion
model and the current best estimate of the object’s
motion. The detections and tracks are matched using a
Hungarian association algorithm [11] based on a cost
function between the track and the detection. For 3D
detections, each detection is transformed into the inertial
map frame. The matching cost metric used is the
weighted sum of the Euclidean distance between the
detection and track bounding box centers, the
percentage difference in the size of the bounding boxes,
a 3D Intersection-over-Union (IoU) cost between the
boxes and a focal loss cost [12] between the type
prediction of the detection and the type of the track. This
sum can be seen in equation (1). Following this
association, each matched 3D detection is used to
perform a Kalman update on its associated track [13].

Cmatch “λdistLdistpb, b̂q ` λsizeLsizepb, b̂q`

λiouLioupb, b̂q ` λclsLclspp, p̂q
(1)

To match the 2D detections, the motion predicted tracks
are projected from the inertial map frame to the image
plane and the matching is performed between the
projected positions of the tracks and the 2D bounding
box detections. The matching cost metric in this case is
the weighted sum of the Euclidean distance between the
track and detection bounding box centers in the image

15

PEDESTRIAN PEDESTRIAN
PEDESTRIAN

VEHICLE VEHICLE VEHICLESTOP

BARREL BARREL BARRELBARREL
BARRELBARREL

STOP
STOP

Figure 26: Visualization of the tracker performance along
with the corresponding 2D Object Detection input.

plane, the percentage difference in the size of the
bounding boxes in the image plane, a 2D IoU cost
between the boxes, and a focal loss cost [12] between
the type prediction of the detection and the type of the
track. The Kalman filter update is not performed with the
2D object detections; only the Hidden Markov Model is
applied to the types of each tracked object.

6.3.3 Performance of aUToTrackv3 With the rollback
incorporated, the aUToTrackV3 system is able to achieve
a throughput rate of 30 Hz and a latency of 50 ms without
discarding any detections. Regarding the performance,
the tracker is able to maintain mostly consistent tracks for
both the static and dynamic objects in a scene, as shown
in Figure 26. Further improvements can be made to
avoid ID switches in the case of poor incoming 3D
detections, such as an occluded vehicle being detected
as two separate bounding boxes. As well, potential
improvements can be made to incorporate the 2D
bounding box information into the Kalman update, further
stabilizing the positions of the objects in the scene.

To stabilize the object types, a Hidden Markov Model
(HMM) is used to update the type of each track based on
the type detected and the previous estimate of the object
type [14].

Following the Kalman and HMM updates for the known
tracks, track maintenance is performed to initialize and
remove tracks. Detections that were not matched to an
existing track are initialized as new "trial" tracks,
representing new objects entering the scene, while tracks
that have not had an associated detection for the past
texpire seconds are demoted from full tracks to trial
tracks, suggesting the objects might have exited. Trial
tracks that have not been reobserved after tprune
seconds are removed from the list of tracked objects. If a
trial track has been observed for tbirth seconds, then it is
promoted to a full track. Only the full tracks are published
to the planner, preventing false positives from being
published.

6.4 TRAFFIC LIGHT HANDLING PIPELINE
Single-frame single-camera approaches for traffic light
perception (OD only) are efficient, but fail to handle
difficult scenarios. Due to their single frame limitation,
these approaches are sensitive to detector noise and
cannot handle temporary occlusion or detect flashing
lights. Furthermore, single-camera approaches have
insufficient sensor coverage for long or wide
intersections.

To address the limitations of single-frame single-camera
approaches, we developed a multi-camera traffic light
tracking pipeline based on our Year 1 approach. Our
aUToLights pipeline (Figure 27) is designed to be robust
and uses multiple sensor modalities for redundancy. This
robustness is accomplished by using a HD map, Hidden
Markov Models (HMMs), and flashing light detection.

Our final traffic light pipeline design was selected after
we evaluated the performance of each proposed
alternative on data collected last year at MCity and at the
University of Toronto. To emphasize safety, we give
highest priority to False Positive Rate and False Negative
Rate. We also consider 3D localization accuracy, flashing
detection, and tracking performance. Based on our
analysis in Figure 28, our aUToLights pipeline (OD + Map
+ HMM + Flashing detection) was chosen.

The overall pipeline shown in Figure 27 accomplishes 3
major tasks: 1) traffic light fusion, 2) traffic light tracking,
3) traffic light state estimation, which we briefly describe
in the following sections, but readers are encouraged to
read our recent publication for more details [15].

6.4.1 Traffic Light Fusion We run our 2D detector
separately on the center long-range (LR) and center
wide-angle (WA) cameras to obtain 2D traffic light
observations (type and light bulb state). From the HD
map, we obtain the precise 3D position of all traffic lights.
We then fuse the 2D traffic light observations from the
detector with the HD map. This enables us to combine
state estimates with precise 3D position from the map. If
our 2D detector fails, we can avoid a false positive
(erroneous traffic light detection) or a false negative
(missed traffic light detection) by using the HD map as a
fallback.

We perform the 3 following fusion steps separately for
each camera.

1. Determine expected traffic lights from the map.

2. Project 3D traffic light position from HD map to 2D
bounding box in each camera sensor’s image plane.

3. Determine optimal association of projected traffic
lights (map) to 2D observations.

Figure 29 shows an example of light fusion. With
accurate sensor calibration, the projected traffic lights
from the HD map are close to the 2D detections. During

16

Map
Database

Track
Management

Localization

Driver Layer

Sensor
Preprocessor

Detection Layer

Tracking Layer

Planning

Mapping &
Localization

SubSystem
Color Legend

aUToLights TL Pipeline

TL Tracking

TL Detection
with DLA

 TL Detection
with DLA

Upcoming
TL

Hungarian
Association

3D to 2D
projection

Hungarian
Association

HMM
Filtering

Flashing
Detection

Behaviour
Planning

TL Class Refinement

TL Detection

Image
Preprocessor

Image
Preprocessor

LR Camera
Driver

WA Camera
Driver

TL Fusion

Figure 27: Traffic Light pipeline architecture.

Crit
eria

W
eigh

t

OD O
nly

OD + M
ap

OD + H
M

M

OD + M
ap + H

M
M

OD + M
ap + H

M
M

 + FL
ASH

Implementation

Ease of Implementation 1 1 0.5 0.5 0.25 0.25

Additional Dataset Requirements 1 1 1 0.5 0.5 0.5

Performance

False Positives Rate 3 0.25 0.5 0.5 1 1

False Negative Rate 3 0.25 1 0.25 1 1

3D Localization Accuracy 2 0.25 1 0.25 1 1

Flashing Light Detection 2 0 0 0.5 0.5 1

Object Tracking Performance 2 0 0.5 0.5 1 1

Totals 4 9 5.75 11.75 12.75

Rank 5 3 4 2 1

Figure 28: Traffic light handling architecture comparison.

traffic light association, we pair up the traffic lights from
the map and the 2D detector based on the bounding box
similarity and euclidean distance. Successful pairs of the
map and 2D traffic lights are fused to create candidate
traffic light tracks.

6.4.2 Traffic Light Tracking Following fusion of traffic
light observations, we track traffic lights temporally across
frames over the two cameras. Each candidate traffic light
track must be detected for Nbirth successive frames
before we establish a traffic light track. All traffic light

Figure 29: An example of traffic light fusion using Year 1
data collected at MCity. Red and green boxes represent
2D traffic light detections and their states, indicating red
and green lights respectively. Cyan boxes indicate traffic
lights projected from the HD map. Associations are
depicted by green lines.

tracks are assigned a track ID to uniquely identify it. For
each observation of an existing traffic light track, we add
the 2D detected state to the track’s history. By creating
traffic light tracks and updating the track’s history, we can
handle 2D false negatives due to temporary occlusions
or 2D detector limitations. Any traffic light tracks that are
not observed for Ndeath frames are discarded.

6.4.3 Traffic Light State Estimation For each traffic
light track, we use the track’s state history to estimate the
most likely current state. We use two approaches for
state estimation: 1) Hidden Markov Model (HMM) state
filtering and 2) duty cycle threshold flashing light
detection. Both of these approaches rely on using
statistical priors derived from traffic light regulations.

For HMM state filtering, we incorporate the expected
traffic light sequences from regulations (e.g. green light
to yellow light to red light) into transition probabilities
between different states. We also model the 2D detector
using observation probabilities based on its test
performance and its tendency to mispredict specific
classes. The transition and observation probabilities
allow us to perform an HMM update step to propagate
our current belief state of the most likely traffic light state.
For each new observation, we incorporate its predicted
state and confidence using the HMM update step. The
HMM filter also enables state estimation when there is no
2D detection for a given frame. Figure 30 shows an
example where the HMM enables us to infer a state
when the 2D detector fails due to occlusion on the 4-light.
Note that the detection confidences are also higher when
using the HMM filter since the state estimate is based on
multiple frames rather than a single frame.

For flashing light detection, we use a simple duty cycle
threshold approach. Based on the US federal highway
regulations, we set an upper and lower threshold of (12 ,
2
3) for the ratio of on and off traffic light states over the
last N states [16]. The traffic light is predicted to be
flashing only if both the on and off state ratios are within
this threshold.

17

Figure 30: Visualization of traffic light bounding boxes and
predicted class labels over a sequence of frames (two
frames are shown) for the detector only approach (Top)
and the proposed approach (Bottom).

6.5 LANE AND STOP LINE HANDLING PIPELINE
Reliable lane and stop line handling is crucial for
localizing Artemis, navigating safely, and following road
rules. Single lane and stop line detectors are an efficient
way to achieve this but fail to provide a complete
understanding of a driving environment. Due to their
reliance on computer vision methods these approaches
are highly susceptible to lighting conditions, the quality of
road markings, and occlusions. Additionally, by only
making detections in the ego lane these methods provide
a limited understanding of the road and restricts
downstream capabilities.

To address the limitations of computer vision based
single lane and stop line detectors, we developed a
pipeline that fuses multi-lane detections with the vehicle’s
HD map and GPS position. By using a HD map, we
exploit a prior that greatly improves the safety and
reliability of our system while satisfying our
computational constraints. At the same time, we still
utilize our lane and stop line detection capabilities to
verify the accuracy of the HD map and make necessary

Table x. Pugh chart for <design component> selection.

Crit
eria

W
eigh

t

Com
pute

r V
isi

on A
ppro

ach

Deep Le
arn

in
g +

 P
ost

Pro
ce

ss
in

g

Deep Le
arn

in
g +

 P
ost

Pro
ce

ss
in

g +
 M

ap

Implementation

Ease Of Implementation 1 1 0.5 0.25

Requires Annotated Data 1 0 1 0.5

GPU Dependency (Artemis Compute) 2 0 1 0.5

Tunable 1 1 0.5 0.8

Performance

Lane And Stop Line Handling Accuracy 3 0.5 0.75 1

Operation Speed 3 1 0.5 1

Robustness After Environment Change 2 0.5 0.75 1

Totals 7.5 9.25 10.55

Rank 3 2 1

* feel free to change any number in this pugh chart for your own design selectionFigure 31: Lane and stop line architecture comparison.

3. Lane-Map

Association

Camera

Driver

1. Deep Learning

Lane Detection

Driver

Layer

Detection

Layer

Sub-System Color Legend

Inputs

2. Postprocessing

Detections

Localization

Map
Database

Lane And Stop
Line Detection

Perception Detection,
 GNSS/INS And Map Fusion

OutputGNSS/INS

Driver

LiDAR

Driver

Mapping &
Localization

Option 1: Use if incorporating
depth estimation node information.

Option 2: Use if not incorporating
depth estimation node information.

3. Lane-Map

Association

Camera

Driver

1. Deep Learning

Lane Detection

Driver

Layer

Detection

Layer

Sub-System Color Legend

Inputs

2. Postprocessing

Detections

Localization

Map
Database

Lane And Stop
Line Detection

Perception Detection,
 GNSS/INS And Map Fusion

GNSS/INS

Driver

Mapping &
Localization

Figure 32: Lane and stop line handling pipeline.

offline corrections based on discrepancies between the
two. This capability is particularly useful when road
markings have changed due to roadwork or repainting.

After thorough evaluation of proposed alternatives on
data collected at MCity and testing at the University of
Toronto, we selected the most reliable system based on
detection accuracy, robustness to environment changes,
and operation speed. Our final lane and stop line
handling pipeline (combining Deep Learning Detections
+ Computer Vision Post Processing + HD Map) was
determined to be the most effective option, as shown in
Figure 31.

Our pipeline is shown in Figure 32, in which we perform
the following 3 steps:

1. Detect all road lines using an end-to-end neural
network.

2. Post-process the detections using computer vision
methods to identify attributes such as lane type,
color, and distance to lane lines and stop lines.

3. Fuse the post-processed detections and HD map to
localize the vehicle.

6.5.1 Deep Learning Detections And Post-Processing
We use YOLOPv2 [17], a state-of-the-art road line
detection network trained on BDD100K dataset [18]. In
order to overcome computational limitations and scarcity
of annotated data, our neural networks do not aim to
detect and classify multiple lane classes. Instead, we
utilize deep learning to detect crucial road lines such as
but not limited to lane lines, stop lines, crosswalks, and
curbs as a single, unified class. These are then
post-processed using conventional computer vision
methods which are fast and efficient to determine
specific attributes such as the color, type, and distance of
the line from the vehicle. In the end, these detections are
compared to the HD map.

The post-processing of these deep learning detections
involves several steps, shown in Figure 33. After

18

(a) Image
From Camera

(b) Birds Eye View
Transformation

(d) Probabilistic
Hough Transform

(c) Trinarized Edge
Map And Filtering

(i) Classify Lane And Stop Line Attributes
(Type, Color And Distance From Vehicle)

(j) Lane And Stop
Line Detection

WS

0 # 1 # 2

WS

WS

WS

WS

WS

(g) Line Detections
Using YOLOPv2

(f) Sobel And
Color Thresholding

(h) Isolate Lanes, Obtain
Contours And Endpoints

(e) Stop
Line Detection

W - White
Y - Yellow
S - Solid
D - Dashed
 - Stop Line
 - Lane Line

Legend

(k) Compare To
HD Map

WS

Figure 33: Lane and stop line detection pipeline.

transforming the camera image into the bird’s eye view
using a homography transformation, we apply contrast
enhancement and edge detection to improve the quality
of the image for feature extraction. Using prior knowledge
of road marking widths, a probabilistic Hough transform,
and line segment clustering, we consistently detect stop
lines, which we then isolate by masking out other pixels.
Color thresholding is used to accurately identify
important attributes of these detections such as whether
the lanes are yellow or white and if they are solid, dashed
or double lines. Reporting characteristics of the lanes
permits downstream systems to gain a better
understanding of available navigation options. We also
predict the relative distances between Artemis and
detected lines by analyzing pixel differences, which is
crucial for safe lane keeping. Finally, we cross-reference
the detections with the HD map and flag any
discrepancies for human review. Validating the map
offline improves its reliability. This ensures that Artemis
can confidently handle lanes and stop lines using the HD
map when driving autonomously.

Left Lane

Lane Marking ID: -896

Colour: Yellow

Type: Thin Double
Left Dashed Right
Solid Line

Distance: 1.69275

USHR ID: 4562367

Right Lane

Lane Marking ID: -898

Colour: White

Type: Thin Solid
Single Line

Distance: 1.72942

USHR ID: 4562367

Figure 34: Lane and stop line handling using the HD map.

6.5.2 Lane-Map Association And Localization With
the HD map validated and fixed using our deep learning
lane detection approach, it can be queried based on the
vehicle’s GPS location. When Artemis is under
autonomous driving mode, it relies on the HD map
associated at its real-time GPS location to obtain
information about nearby lanes including their relative
distance, color (e.g. yellow or white) and marking type
(e.g. solid, dashed, or double), as shown in Figure 34. In
addition to lane handling which will be used by the route
planning module, the HD map is also used to detect stop
lines, which is crucial for safely halting the vehicle when
approaching intersections where other road users may
be crossing.

7 ROUTE PLANNING

The rapidly evolving domain of autonomous vehicles
demands sophisticated and efficient route planning
solutions that not only ensure safe navigation but also
optimize the overall travel experience. To address these
requirements, our Route Planning section incorporates
three key modules: (1) the Planning module, which
focuses on generating an optimized planned path, (2)
Velocity Profile Generator module which smooths out the
speeds in the planned path to product a trajectory, and
(3) the Vehicle Control module, which is responsible for
executing the trajectory as closely as possible. This
cohesive system ensures a seamless transition from
high-level route planning to low-level control commands,
ultimately delivering a safe and efficient driving
experience.

To facilitate understanding of key concepts that underpin
our Planning and Vehicle Control modules, we define the
following terms:

• pose: position and orientation P “ txref , yref , θrefu

• planned path: a sequence of poses with max speed

• trajectory: a path with a target velocity vref
associated with each pose

• lanelet: a distinct, variable-length segment of a road
lane, characterized by a centerline, boundary, and
direction of travel, which connects to other lanelets
through parent-child relationships

• sibling lanelet: a lanelet that is immediately adjacent
to and shares the same direction of travel with the
current lanelet

• global path: a sequence of connected lanelet ids
obtained from the HD map

• road segment: a section of the road network
consisting of interconnected lanelets and associated
traffic signs and signals that together facilitate traffic
flow and navigation

• connectivity graph: a set of all road segments that
form the HD map

19

7.1 PLANNER
Our proposed solution is a hierarchical design that
comprises three interconnected sub-planners: 1)
Behavioral Planner (BP), 2) Global Planner (GP), and 3)
Local Planner (LP). The hierarchical design allows for
efficient and modular operation while ensuring the robust
and safe navigation of self-driving cars. This design
ensures that each sub-planner can focus on its specific
task, ultimately leading to more reliable and optimized
route-planning solutions. This planner architecture has
been inspired by the success of hierarchical designs in
various real-world tasks, including top-ranked teams in
the DARPA Urban Challenge[19] that employed similar
strategies for tasks such as high-level routing planning
and low-level trajectory generation.

The Planner architecture, as shown in Figure 35, takes
as input the target sequence of waypoints to traverse,
map data, vehicle localization, traffic light states, and
detected objects. Its output is a desired planned path,
which is subsequently sent downstream to the Velocity
Profile Generator module. BP serves as the central hub
of our architecture, managing the inputs and outputs,
facilitating bilateral communication between GP and LP,
and dictating reactions to detections from perception.
Each cycle of the planning module, which consists of
re-processing in BP and invoking LP occurs every 100
ms (10 Hz) while GP is invoked by BP once on every
change to the destination. Given that this year’s
competition scope does not involve dynamic rerouting,
the global path leading to the destination remains
unchanged.

Traffic Light
Tracker

Multi-Object
Tracker

Localization

Vehicle
ControlTarget Path

PlannerInputs Outputs

Tracking
Layer PlanningMapping &

Localization Control

Sub-System Color Legend

Other

Map
Database Sensor Ingress

Traffic
Conditions

Path Egress

Behavioural Planner (BP)

A* Search

Lane Change
Penalty

Lanelet
Sequence

Global Planner (GP)

Lattice Pruner A* Search

Local Planner (LP)

Corner Case
Handling

Handle
Indicators

Lattice Database

Coordinator

Object Handling

Figure 35: Planning module architecture.

7.1.1 Behavioral Planner (BP) BP contains two main
components: a main Coordinator module and the rest
blocks as the Behavior module as shown in Figure 35.
The Coordinator module acts as a high-level manager for
the three sub-planners whereas the Behavior module is
responsible for handling traffic signals, traffic signs, and
detected obstacles and determining the correct behavior

for the vehicle including toggling the indicator lights.

The Coordinator module reads sensor data at a fixed
frequency of 10 Hz. At the start of each planning cycle,
Coordinator calls the three sub-planners in the following
order: BP, GP, and LP. First, the Behavior module
acquires updated information on Artemis’s position,
current road traffic state, and potential obstacles from the
Coordinator module. Next, GP is triggered to generate
the global path using Artemis’s current location and
destination. For this year without dynamic rerouting, GP
only needs to be called once to generate the path. If no
path is provided or an emergency arises, the Behavior
module generates a safe planned path to bring Artemis
to a safe stop. Otherwise, the global path from GP is
forwarded to LP, which creates a planned path to guide
Artemis to its desired destination.

When BP is initially run, data from the HD map, sensors,
and vehicle localization are combined to determine legal
behaviors for the car. For example, if any speed signs are
detected on the side of the road, a virtual line is drawn
across the road at the position of the sign, and the speed
limit is observed when the vehicle crosses the virtual line.
Any obstacles detected by the sensors are first checked
to be valid, and validated obstacles are then passed to
LP to trigger lane changes if necessary.

When Artemis approaches an intersection with traffic
lights, the Behavior module will generate a virtual stop
line in front of the intersection upon a red signal, inducing
an empty planned path which brings Artemis to a stop.
For stop signs, the Behavior module will pause for a
minimum stopping duration and only check for obstacles
before calling LP again to move the vehicle.

Furthermore, car indicator lights such as blinkers are
also triggered by the Behavior module during lane
changes or turns.

7.1.2 Global Planner (GP) Given a sequence of
target waypoints to traverse from the start to destination,
GP searches through the connectivity graph to determine
the sequence of connected lanelets with the shortest
total distance to be traversed. This forms the global path.

Despite this year’s competition providing a predetermined
road sequence which allows pre-computation of the
global path offline, we opted to develop GP for future
adaptability and to demonstrate our system’s resilience.
BP triggers GP at the start of the planning cycle with
Artemis’s current location and destination. GP then
generates a global path that BP forwards to LP, and is not
triggered again until a new destination is given.

The global path includes lane change signals. However,
LP can override these signals based on perception
outputs, such as avoiding obstacles. However, the
planned path strives to adhere to GP’s recommendations

20

with deviations being penalized.

GP is implemented using the A* algorithm, which
searches over lanelets in the connectivity graph to find
the most efficient route. In addition, we considered
corner cases where the start and destination locations
are within the same lanelet. Under these scenarios, the
lanelet travel direction determines if the destination is
before or after the starting point; if it’s after, the current
lanelet is returned, otherwise, a path with more than one
lanelet is computed. Moreover, the GP design
discourages frequent lane changes and lane changes
into the destination lanelet to ensure road safety, avoid
confusion, reduce the risk of accidents, and maintain
route efficiency by providing a smooth, predictable
vehicle trajectory.

By incorporating GP into our Planner architecture, we
have designed a system that is not only well-suited for
the current competition but also adaptable for future
iterations, showcasing the robustness and flexibility of
our solution.

7.1.3 Local Planner (LP) LP takes the global path
generated by GP via BP and creates a kinematically
feasible, obstacle-free planned path for the controller. To
achieve this, various planners were assessed, as
depicted in Figure 36. Ultimately, a lattice-based planner
was chosen for its kinematic feasibility assurance,
runtime performance, and ease of implementation.

Table x. Pugh chart for <design component> selection.

Crit
eria

W
eigh

t

Cente
rli

ne Fo
llo

wer

La
tti

ce
-Base

d Plan
ner

Fre
e Sp

ac
e Plan

ner

Complexity 5 0 1 -2
Ease of testing 2 0 3 -2

Runtime Performance 3 0 3 -2
Reliability (amount of edge cases) 1 0 2 -1

Capabilities 1 0 1 8
0 23 -13

2 1 3

* feel free to change any number in this pugh chart for your own design selection

Implementation

Performance

Totals
Rank

Figure 36: Pugh chart comparing different approaches to
local planning.

For each HD map, we pre-generate its lattice version
offline. To construct the lattice, we create lattice edges
connecting pairs of points on the HD map, from each
point to three points situated 10 to 15 meters ahead in
the current and sibling lanelets. Edges are connected by
designating any edge beginning at the end of another
edge as the second edge’s child.

Each lattice edge represents a potential planned path
segment, facilitating transitions between initial and
terminal states. These segments are generated using a
pair of quintic Hermite splines for each dimension. The
splines are constructed to ensure the initial and terminal
poses accurately match the lattice edge’s initial and
terminal positions, while other parameters are chosen to
satisfy curvature and collision avoidance constraints. The

Figure 37: Left : Full lattice generated from the MCity map;
Right : Satellite imagery of MCity.

generated lattice for MCity is shown in Figure 37. Details
of how lattice edges look like can be best viewed in color
in Figure 38.

Since the area of the HD map is relatively small, a
complete path from the vehicle’s current pose to the
destination can be generated each cycle. An A* search
algorithm is employed on the lattice to determine a path
given starting and ending positions. The search utilizes
Euclidean distance as a heuristic and applies a penalty
for lane changes and deviations from the global path,
resulting in the lowest cost path through the lattice.

To handle obstacles, lattice edges intersecting with an
obstacle are pruned, making them impassable for the A*
search. Since this process occurs online, it is
computationally infeasible to check for intersections with
every lattice edge due to runtime constraints. To reduce
runtime, we only check for intersections within a certain

Figure 38: An example of a planned path on a test lattice
generated from our UTIAS map. On the left is a path in red
without obstacles and on the right is a path with obstacles
on the pruned lattice. Segments in other colors represent
lattice edges.

21

Mapping &
Localization

Control

Sub-System Color Legend

Vehicle
Interface

Velocity
Profile

Cross Track
Error Term

Heading
Error Term

Stanley/MPS
Control Law Clamp Low Pass Filter

Velocity
Error Term

Acceleration
Error Term

Proportional
Gain

Integral Gain

Proportional
Gain

Integral Gain

Proportional
Gain

Feedforward
Term

OR Operator

Clamp

Low Pass Filter

Vehicle
Interface

Speed Control

Steering Control

Localization

Figure 39: Decoupled Controller Diagram depicting the steering and speed control

distance from the vehicle’s current pose. We find the
nearest edges by employing a Breadth-First Search
(BFS) from our current edge and only check those edges
for intersection. This approach significantly reduces the
computational effort required to prune the lattice.
Obstacles also have a timeout and will disappear after a
fixed amount of time if not re-detected. This prevents
issues from erroneous detections from the object tracker.
Figure 38 shows paths generated on our UTIAS test
lattice before and after injecting obstacles.

We designed the Planner architecture to satisfy the
requirements posed by the Intersection and Highway
challenges. For the Intersection Challenge, we are
provided with a sequence of target waypoints ending with
the destination. BP ensures appropriate reactions to stop
and yield signs along with traffic lights while LP ensures
a kinematically feasible planned path for the car free of
hitting curbs. For the Highway Challenge, since no
explicit destination is provided, it instead terminates at a
full blockage of all legal lanes. Here, BP manages a
temporal record of detected static obstacles from
perception and dynamically adjusts the destination. LP
uses this temporal record to generate kinematically
feasible planned paths with obstacle avoidance and lane
changes. In both challenges, GP translates the high-level
sequence of waypoints into the optimized global path. All
these considerations are necessary to ensure that
Artemis can meet all the competition requirements and
successfully complete both challenges autonomously.

7.2 VEHICLE CONTROL
This section explains our vehicle control strategy. The
controller takes in a desired path and the vehicle’s
localization information as inputs to compute axle torque,
deceleration rate and steering wheel angle commands.
These resulting control commands are taken as inputs by
the vehicle interface module, which sends these
commands to the vehicle over CAN messaging
protocol.The desired path is obtained from the Path
Planner and is a sequence of waypoints consisting of 2D
poses and speed limits. This planned path is converted
into a trajectory for the controller to track by the Velocity

Profile Generator(VPG), which generates a kinematically
feasible velocity profile over the planned path by
substituting the road speed limits with the desired velocity
values. The vehicle’s current state is obtained from the
NovAtel GNSS/INS sensor and provides the measured
2D pose, current velocity and current acceleration.

Table x. Pugh chart for <design component> selection.

Crit
eria

W
eigh

t

Pure
 P

urs
uit

St
anle

y

M
PC

Ease of implementation 8 7 10 3

Ease of calibration 8 9 10 2

Computation time 3 10 10 0

Constraints 5 4 4 10

Lanekeeping performance 8 6 6 10

Disturbance rejection 6 5 5 10

Steady State Error 5 0 0 10

256 288 280

3 1 2

* feel free to change any number in this pugh chart for your own design selection

Totals

Rank

Figure 40: Pugh chart for comparing different lateral
control approaches

7.2.1 Control Architecture Overview The Pugh chart
in Figure 40 compares the different geometric and
optimization approaches that were considered for the
lateral control. Although the Model Predictive Controller
(MPC) is the clear winner in terms of criteria such as
ability to add constraints, lanekeeping performance,
disturbance rejection, and steady state error, the goal for
this year was to implement a control strategy which is
easy to develop and calibrate on the vehicle to enable us
to maximize our testing time on Artemis. This led us to
select Stanley controller as the baseline and an
accompanying PID controller for longitudinal control.

The controller is decoupled into a steering control
module and speed control module as shown in Figure 39,
allowing for strong independent control performance for
steering and speed.

7.2.2 Velocity Profile Generator The VPG forms the
connection between the planner and controller by taking
as input the local path from the LP and assigning a
kinematically feasible trapezoidal velocity profile over the
path for the controller to follow. An example velocity
profile can be seen in the velocity tracking plot in

22

Figure 41: Experimental control results in simulation consisting of a path tracking plot, absolute lateral error plot, velocity
tracking/error plots and heading tracking/error plots.

Figure41. The deceleration phase ensures that every
local path ends with a 0 m/s velocity which is critical for
safety reasons. VPG also reduces the desired speeds
depending on the road curvature and allowable lateral
acceleration limit.

7.2.3 Speed Control Our investigation into speed
control involved evaluation of two distinct approaches: a
singular PID system and a cascaded PID system. The
former approach determines the torque command via a
PI controller based on the velocity error. The latter
approach, however, uses a first PI controller to derive the
desired acceleration based on the velocity error, while a
second integral controller computes the torque command
by taking into account the acceleration error and
feed-forward term. The feed-forward term is computed by
multiplying the desired acceleration by a constant, which
was obtained by empirical analysis. Both methods exhibit
a near-identical tracking performance.

An additional consideration for the speed control
architecture design was the inclusion of the negative
deceleration values required by the vehicle interface. We
approached this requirement by experimenting with two
methods: (1) multiplying the negative torque by a
constant (obtained by empirical analysis similar to the
feed-forward constant) or (2) using the desired
acceleration value from the first PI controller when the
output torque matches the sign of the desired
acceleration value, otherwise multiplying the negative
torque by a constant. Both methods result in adequate
speed control tracking and have similar performance.

7.2.4 Steering Control For lateral steering control, the
Stanley controller used by Stanford in the DARPA Grand
challenge[20] was used as a baseline to design the
Model Predictive Stanley (MPS) controller. The base
Stanley controller follows a geometric proportional
control law which converges to the closest waypoint
along the path. Using the vehicle’s front axle as the
reference point, the Stanley controller calculates the
heading error and cross-track error between the
reference and the closest waypoint. The final steering
angle is a combination of both the errors -

δ “ ψ ` arctan

ˆ

k ˚ e

ks ` v

˙

(2)

Where ψ corresponds to the heading error and e
corresponds to the cross-track error. The gain k
determines how aggressively we reduce the cross-track
error and ks protects against low speed singularities.

MPS applies the Stanley control law over the prediction
horizon while simultaneously propagating the vehicle’s
states through time using a kinematic bicycle model. This
results in improved performance as we are not only
eliminating error at the closest reference point but along
a fixed horizon of points on the planned path. Compared
to the base Stanley controller, we get a much smoother
steering response. However, having a large prediction
horizon during sharp turns results in the vehicle cutting
corners due to the waypoints near the end of the path
affecting the resulting δ. This drawback was mitigated
using 2 methods - gain scheduling to vary the MPS
horizon with road curvature and reducing the weights on
the the individual δs as we move away from the vehicle’s
current position. The MPS control law is as follows -

δ “

N
ÿ

i“0

Ki

„

ψ ` arctan

ˆ

k ˚ e

ks ` v

˙ȷ

i

(3)

7.2.5 Safety Constraints To ensure safety of the
controller commands, we place constraints on numerous
parameters: the maximum velocity, minimum/maximum
acceleration, minimum/maximum torque, maximum
steering wheel angles and maximum steering wheel
angle rate. Additionally, low pass filters were added for all
the controller commands to ensure a smooth torque,
deceleration and steering command request to the
vehicle interface module.

7.2.6 Experimental Results Our evaluation of the
decoupled controller involved numerous scenarios to fully
test the controller’s efficacy, which included a driving
scenario complete with straight paths, left and right turns,
and a stop. We illustrate the path tracking performance,
lateral results, longitudinal results, and heading error
results in Figures 41 respectively. The longitudinal
control performance was evaluated based on the velocity
profile tracking and the lateral control performance was
evaluated based on the heading error and lateral error
with respect to the reference trajectory. Our controller
demonstrated a maximum lateral error of 40 cm, while
the speed tracking performance proved adequate for

23

precise longitudinal tracking. Overall, our evaluation
attests to the efficacy of our controller in navigating a
rigorous driving scenario.

Figure 42: Vehicle Lateral Error for UTIAS parking lot path

7.2.7 Vehicle Testing Figure 42 depicts the vehicle’s
lateral error which is an indicator of the controller’s
lanekeeping performance. This data was collected during
autonomous testing at our UTIAS campus and the path
followed by the vehicle for this test can be seen in Figure
38. During this test, the planner, VPG, controller and the
vehicle interface module were running on Artemis. As we
can see, the MPS controller is able to achieve lateral
errors of less than 50cm which was one of our core
design requirements. The error is less than 25cm on
straight paths and peaks at around 40cm on high
curvature turns which also involves a tight U-turn!

8 CHANGES FROM YEAR 1 TO YEAR 2

In closing, we summarize the changes from Year 1 to
Year 2 in two categories, hardware and software.
Hardware changes were mostly motivated by the
integration with the new vehicle, new sensors, and the
Intel server. Software changes were driven by lessons
learned in Year 1 developing the perception system as
well as the introduction of route planning and vehicle
control modules.

8.1 HARDWARE CHANGES

8.1.1 Vehicle Retrofit The pentagonal top sensor rack
stayed the same as the Year 1 design, while the bumper
sensor rack was changed to a plate design for its low
profile such that the bumper sensors do not protrude
from the existing vehicle contour. A new bluelight
controller unit was built to automatically toggle bluelight
states as a warning light or an autonomous mode
indicator. A custom harness made up of four separate
CAN bus lines was constructed to communicate between
the vehicle and our server.

8.1.2 Sensors The bumper sensor suite was modified
to support a single Continental ARS548 radar instead of
the 3 ARS430 due to the significant sensor improvement
that a single ARS548 suffices the coverage requirement.
In addition, the new X90 LiDAR by Cepton has been

supported but was not used to replace an existing P60
because having all LiDARs the same model allows us to
tune their parameters in a unified fashion. As for the
GNSS/INS unit, aUToronto has switched over to the
NovAtel PwrPak7D-E2 receiver, using TerraStar-C PRO
GNSS correction service allowing for rapid convergence
and centimeter-level accuracy. While the Lucid cameras
originally used hardware synchronization in Year 1, we
decided to remove this additional hardware and opted for
software-based PTP sync instead, allowing for simplified
time synchronization with the GPS system.

8.1.3 Intel Server The computing platform in Year 2
has been changed from the consumer desktop with an
NVIDIA GPU to an Intel data center server with an Intel
GPU. As a result, many software architectural changes
were made to leverage the high CPU core count as well
as the deep learning acceleration capabilities of the
server. Most notably, the integration of OpenVINO [4]
allowed not only for deep learning acceleration, but
asynchronous inference in order to improve performance.

8.2 SOFTWARE CHANGES

8.2.1 Perception Sensor Fusion Our development on
deep learning acceleration using Intel’s OpenVINO in an
asynchronous way enabled us to fully commit to deep
learning approaches for 2D object detection. In Year 2,
all objects were detected using a YOLOv5 nano model,
including barrels and barricades which were detected
using conventional pattern matching in Year 1. In
addition, new signs such as various turn only signs and
railroad signs and lights were also supported by the
neural network. 3D object detection this year
incorporated LiDARs’ intensity channel to enhance traffic
sign detection. Moreover, from the Year 1 competition,
we noticed that 3D detections would sometimes arrive
out of order due to each Cepton LiDAR’s different capture
timestamps. This year we implemented a tracker rollback
function to specifically handle such scenario which
resulted in a more time consistent object tracker output.
Aside from tracker, the traffic light handling pipeline was
redesigned in Year 2 to improve state estimation by
including observations that were previously discarded
and to better handle ego motion with more accurate
traffic light projection. Lastly, in addition to apply
lane-map association for localization, we devised a
strategy to run deep learning based lane detection model
offline to validate the HD map against any discrepancy.

8.2.2 Route Planning and Vehicle Control Route
planning and vehicle motion control are the entirely new
addition to our autonomy software stack since we
operate on a real vehicle in Year 2. To gain vehicle
control, 3 CAN bus channels (HS, CE, LS) were added in
addition to Year 1’s scoring CAN interface. A
sophisticated vehicle interface layer was developed
according to the GM document to send autonomous
driving commands to the vehicle.

24

9 PAPERS AND CONFERENCES

This section lists all publications and conferences
attendance by aUToronto members since the
commencement of AutoDrive Challenge II.

Conference papers published:

1. S. Wu, N. Amenta, J. Zhou, S. Papais, J. Kelly,
“aUToLights: A Robust Multi-Camera Traffic Light
Detection and Tracking System,” 2023 20th
Conference on Computer and Robot Vision (CRV),
Montreal, QC, Canada, 2023

2. J. Xu, S. Waslander, “HyperMODEST:
Self-Supervised 3D Object Detection with
Confidence Score Filtering,” 2023 20th Conference
on Computer and Robot Vision (CRV), Montreal,
QC, Canada, 2023

Conference attended and to-be attended:

1. Attended and presented a Workshop Presentation at
the Conference on Robots and Vision (AI ¨ CRV
2022), Toronto, ON, Canada, May 30, 2022

2. To attend and present an Oral [15] and a Poster [21]
Presentation at the Conference on Computer and
Robot Vision (CRV), Montreal, QC, Canada, June
6-8, 2023

10 CONCLUSION

In this concept design report, we summarized our design
of Artemis for the Year 2 competition of the AutoDrive
Challenge II. We detailed the mechanical and electrical
integration with the new Bolt EUV, sensor placement and
configuration, and software architecture. We described
each module of our software architecture in details,
including multi-modal perception sensor fusion strategy,
route planning and vehicle control. In addition to the
theoretical justification of the design decisions, we
demonstrated each module’s performance running live
on Artemis under various internal testing scenarios to
show our progress towards Level 4 autonomy.

References

[1] Taxonomy and definitions for terms related to driving
automation systems for on-road motor vehicles. DOI:
10.4271/j3016_201806.

[2] C. Qian, “On the design and validation of an autonomous
vehicle perception system for the sae/gm autodrive
challenge ii,” M.S. thesis, University of Toronto, 2022.

[3] P. Besl and N. D. McKay, “A method for registration of
3-d shapes,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 14, no. 2, pp. 239–256, 1992.

[4] Openvino toolkit overview. [Online]. Available:
https://www.intel.com/content/www/us/en/
developer/tools/openvino-toolkit/overview.html.

[5] M. Himmelsbach, F. v. Hundelshausen, and
H.-J. Wuensche, “Fast segmentation of 3d point clouds
for ground vehicles,” in 2010 IEEE Intelligent Vehicles
Symposium, 2010, pp. 560–565.

[6] M. A. Fischler and R. C. Bolles, “Random sample
consensus: A paradigm for model fitting with applications
to image analysis and automated cartography,”
Commun. ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981,
ISSN: 0001-0782.

[7] T. Yin, X. Zhou, and P. Krahenbuhl, “Center-based 3d
object detection and tracking,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 11 784–11 793.

[8] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and
O. Beijbom, “Pointpillars: Fast encoders for object
detection from point clouds,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 12 697–12 705.

[9] K. Burnett, S. Samavi, S. Waslander, T. Barfoot, and
A. Schoellig, “Autotrack: A lightweight object detection
and tracking system for the sae autodrive challenge,” in
2019 16th Conference on Computer and Robot Vision
(CRV), 2019, pp. 209–216.

[10] G. L. Plett, D. Zarzhitsky, and D. J. Pack, “Out-of-order
sigma-point kalman filtering for target localization using
cooperating unmanned aerial vehicles,” Advances in
Cooperative Control and Optimization, pp. 21–43, 2007.

[11] H. W. Kuhn, “The Hungarian Method for the Assignment
Problem,” Naval Research Logistics Quarterly, vol. 2,
no. 1–2, pp. 83–97, Mar. 1955.

[12] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár,
“Focal loss for dense object detection,” in 2017 IEEE
International Conference on Computer Vision (ICCV),
2017, pp. 2999–3007.

[13] R. E. Kalman, “A new approach to linear filtering and
prediction problems,” Journal of Basic Engineering,
vol. 82, no. 1, pp. 35–45, 1960.

[14] L. E. Baum and T. Petrie, “Statistical inference for
probabilistic functions of finite state markov chains,” The
annals of mathematical statistics, vol. 37, no. 6,
pp. 1554–1563, 1966.

[15] S. Wu, N. Amenta, J. Zhou, S. Papais, and J. Kelly,
“aUToLights: A robust multi-camera traffic light detection
and tracking system,” in 2023 20th Conference on
Robots and Vision (CRV), 2023.

[16] U. D. of Transportation Federal Highway
Administration (FHWA), 2009 mutcd with revisions 1, 2,
and 3 incorporated, dated july 2022 (pdf).

[17] C. Han, Q. Zhao, S. Zhang, Y. Chen, Z. Zhang, and
J. Yuan, Yolopv2: Better, faster, stronger for panoptic
driving perception, 2022.

[18] F. Yu, H. Chen, X. Wang, et al., “Bdd100k: A diverse
driving dataset for heterogeneous multitask learning,” in
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 2636–2645.

[19] J. McBride, “Darpa urban challenge,” May 2007.
[20] S. Thrun, M. Montemerlo, H. Dahlkamp, et al., “Stanley:

The robot that won the darpa grand challenge.,” J. Field
Robotics, vol. 23, pp. 661–692, Jan. 2006.

[21] J. Xu and S. Waslander, “HyperMODEST:
Self-supervised 3d object detection with confidence
score filtering,” in 2023 20th Conference on Robots and
Vision (CRV), 2023.

25

https://doi.org/10.4271/j3016_201806
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html

	Introduction
	Sensor Suite
	Sensor Selection
	GNSS/INS Selection
	LiDAR Selection
	Camera Selection
	Radar Selection

	Sensor Placement
	Sensor Integration
	Time Synchronization

	Hardware Design and Mounting
	Top Sensor Rack Mounting
	Bumper Sensor Rack Mounting
	External/Internal Bluelight Mounting
	Server and Electronics Rack
	Sensor Calibration
	LiDAR Extrinsics Calibration
	Camera Intrinsics Calibration
	Camera Extrinsics Calibration

	Vehicle Electrical Design
	CAN Bus System
	Bluelight Controller
	Electrical Safety

	Software Architecture
	Subsystem Overview
	Driver Layer
	Detection Layer
	Mapping and Localization
	Tracking Layer
	Planning
	Control
	CAN Interface
	Safety

	Sensor Fusion
	2D Object Detection
	Deep Learning Model
	Deep Learning Inference
	Results

	3D Object Detection
	Ground Plane Segmentation
	3D Euclidean Clustering

	Object Tracking by Fusion
	Tracker Rollback
	Tracker update
	Performance of aUToTrackv3

	Traffic Light Handling Pipeline
	Traffic Light Fusion
	Traffic Light Tracking
	Traffic Light State Estimation

	Lane and Stop Line Handling Pipeline
	Deep Learning Detections And Post-Processing
	Lane-Map Association And Localization

	Route Planning
	Planner
	Behavioral Planner (BP)
	Global Planner (GP)
	Local Planner (LP)

	Vehicle Control
	Control Architecture Overview
	Velocity Profile Generator
	Speed Control
	Steering Control
	Safety Constraints
	Experimental Results
	Vehicle Testing

	Changes from Year 1 to Year 2
	Hardware Changes
	Vehicle Retrofit
	Sensors
	Intel Server

	Software Changes
	Perception Sensor Fusion
	Route Planning and Vehicle Control

	Papers and Conferences
	Conclusion

