Implementing and Testing the

Interpolated Factored Green Function Method

For the Accelerated Evaluation of Potentials in Electromagnetic Simulations

Michael P. Acquaviva
Supervised by: Piero Triverio

o5 Engineering Science




Background Algorithm Methods Results Next Steps Conclusion

Electromagnetic Simulation

Electromagnetic simulation is critical to the
development of modern electronics.

As circuits become more complex, simulation
and CAD tools must evolve to handle increasing
electromagnetic detail and scale.

A 3D-IC interposer current density simulation
Credit: ANSYS

- Engineering Science

X UNIVERSITY OF TORONTO




|
Background

From Maxwell to Matrix

Scattering problems can be reformulated as integral
equations from Maxwell’s equations.

: : : : : Plane wave
Using discrete integral formulations, the field at a

discrete observation pointis given by the \

convolution of the Greenﬁs function and the \ i
induced current density J. ~a cee |
For all points, this leads to a dense linear system:

Af= b Scatterer

where A4 is the Green’s function matrix and E is the
known incident field.

£ 4
4y EHglﬂCC]'ll']g Science

N UNIVERSITY OF TORONTO




|
Background

Solving the Linear System

A] =b Informed guess
fori

Direct solutions (e.g., LU decomposition) are too
expensive for large numbers of points, N. Bottleneck!
« O(N?) memory R
3 . Compute A/
* O(N?)runtime
Instead, we use iterative solvers (e.g., GMRES)
which only require the computation of the matrix- Compare A/ to b
vector product.
No Yes >
Returnj
| & Erlgirwm‘ing Science General iterative solver flowchart

N UNIVERSITY OF TORONTO 4



|
Background

The Challenge with Classical Methods

Scaling of Electromagnetic Solvers

. N . 12 | .
Computing the Green Function matrix and 1071 — classical MoM (O(N2))

. . T . . —— Accelerated Method (O(N log N
performing the matrix-vector multiplication is ceelerates Method (0(N ieg M)
expensive: ;éf 10%

« O(N?) memory |

e O(N?)runtime =

£
S 10°F

5

This makes large-scale simulations infeasible as -
. 104_

the number of points grows.
T L -

Number of Discretization Points

g El'lgineering Science

N UNIVERSITY OF TORONTO .




|
Background

The Challenge with Classical Methods

Scaling of Electromagnetic Solvers

10*2F — Classical MoM (O(N2))
— Accelerated Method (O(N log N))
— 101
[2]
c
To simulate modern designs, we need algorithms S Lo®
.o Q) r
that scale better than quadratic. 2
[}
£
S 10%}
-]
(a'e
104 L

102 10° 10* 10°  10°
Number of Discretization Points

&2

iy o

o Engineering Science

UNIVERSITY OF TORONTO




|
Background

Current Solutions for Fast Solvers

Fast industry solvers currently employ some variant of one of the two following algorithms.

Both achieve O(N log N) time and space complexity.

Fast Multipole Method (FMM)

Groups sources hierarchically; approximates far-field
using multipole expansions.

A Requires separate integration routines for
near- and far-field points.

X Accuracy drops as frequency increases — need
to compensate with more terms in the multipole
expansion

g Engi nccring Science

N UNIVERSITY OF TORONTO

Adaptive Integral Method (AIM)

Interpolates to a uniform grid; uses FFT to accelerate
convolution operations.

XK Difficult to parallelize due to the use of the FFT

X Requires the points be placed on a uniform grid —
this makes complex geometries difficult to simulate



|
Algorithm

Interpolated Factored Green Function Method

A method presented in 2021, promising to
compute the matrix-vector product in:

* O(NlogN) memory
« O(NlogN) runtime

It does so by approximating the Green’s

function using interpolation

i Engineering Science

UNIVERSITY OF TORONTO

“Interpolated Factored Green Function” method for accelerated m
solution of scattering problems e

Christoph Bauinger, Oscar P. Bruno *

Computing and Mathematical Sciences, Caltech, Pasadena, CA 91125, USA

ARTICLE INFO

ABSTRACT

Article history:
Available online 4 January 2021

Keywords:
Scattering

Green function
Integral equations
Acceleration

This paper presents a novel Interpelated Factored Green Function method (IFGF) for the
accelerated evaluation of the integral operators in scattering theory and other areas. Like
existing acceleration methods in these fields, the IFGF algorithm evaluates the action of
Green function-based integral operators at a cost of (O(Nlog N) operations for an N-point
surface mesh. The IFGF strategy, which leads to an extremely simple algorithm, capitalizes
on slow variations inherent in a certain Green function analytic factor, which is analytic
up to and including infinity, and which therefore allows for accelerated evaluation of
fields produced by groups of sources on the basis of a recursive application of classical
interpolation methods. Unlike other approaches, the IFGF method does not utilize the
Fast Fourier Transform (FFT), and is thus better suited than other methods for efficient
parallelization in distributed-memory computer systems. Only a serial implementation of
the algorithm is considered in this paper, however, whose efficiency in terms of memory
and speed is illustrated by means of a variety of numerical experiments—including a 43
min., single-core operator evaluation (on 10 GB of peak memory), with a relative error of
1.5 x 1072, for a problem of acoustic size of 512 wavelengths.

© 2020 Elsevier Inc. All rights reserved.




|
Algorithm

Interpolated Factored Green Function Method

The authors claim some key advantages over
AIM and FMM:

Parallelizable due to spatial partitioning
in a tree structure

Does not require separate near- and far-
field integration routines (this is inherentin
the algorithm)

Error remains bounded with increasing
wavelength

i Engineering Science

%) UNIVERSITY OF TORONTO

“Interpolated Factored Green Function” method for accelerated m
solution of scattering problems e

Christoph Bauinger, Oscar P. Bruno *

Computing and Mathematical Sciences, Caltech, Pasadena, CA 91125, USA

ARTICLE INFO

ABSTRACT

Article history:
Available online 4 January 2021

Keywords:
Scattering

Green function
Integral equations
Acceleration

This paper presents a novel Interpelated Factored Green Function method (IFGF) for the
accelerated evaluation of the integral operators in scattering theory and other areas. Like
existing acceleration methods in these fields, the IFGF algorithm evaluates the action of
Green function-based integral operators at a cost of (O(Nlog N) operations for an N-point
surface mesh. The IFGF strategy, which leads to an extremely simple algorithm, capitalizes
on slow variations inherent in a certain Green function analytic factor, which is analytic
up to and including infinity, and which therefore allows for accelerated evaluation of
fields produced by groups of sources on the basis of a recursive application of classical
interpolation methods. Unlike other approaches, the IFGF method does not utilize the
Fast Fourier Transform (FFT), and is thus better suited than other methods for efficient
parallelization in distributed-memory computer systems. Only a serial implementation of
the algorithm is considered in this paper, however, whose efficiency in terms of memory
and speed is illustrated by means of a variety of numerical experiments—including a 43
min., single-core operator evaluation (on 10 GB of peak memory), with a relative error of
1.5 x 1072, for a problem of acoustic size of 512 wavelengths.

© 2020 Elsevier Inc. All rights reserved.




|
Algorithm

Factoring the Green’s Function

Consider the Helmholtz Green’s function:

— >
G(r,7") = ——;
drt|r — 1’|
Now, say 3 a square box with side-length S and H/2 L g Box
e . . - X urrogate source

centered at 7y which contains the source, 7*'. We can | Measurement
re-write the Green’s function for the observation point, P
N —H/2 H/2 3/2H
r, as: . . »

N Test setup, assuming the box is centered at the origin

6 = (o ) ey (=117
Am|lr — 1| ) \|r — 7]

We can call the left factor G (7, 75), which depends only
on the target point and the box location. The right
factoris g, (7, 7', 17).

£ 4
@ _ Engineering Science
& g

N UNIVERSITY OF TORONTO

10



|
Algorithm

Factoring the Green’s Function

We will now assume 7; = 0 (for simplicity):

o e JKITI
Centered factor: G(r, 0) = ( )

41T|7|

Analytic factor: g, (7, 7') = ( 9"”' ejk(IF—F’|—IFI))

77|

Notice the bottom plot. Even for electrically-large box sizes,
the analytic factor experiences slow oscillations (over the box)
= Can be interpolated using polynomials!

Now, we only need to compute G directly for a source at the

center of each box and sample a few other interpolation points.

g El'lgineering Science

N UNIVERSITY OF TORONTO

R(G) - Nermalized

Rig)

Centered Green's Function Gir, r:)

0.75
050 A
0.25
0.00 4 I
=0.25 A J .
050 Box Size
— 0.1
=0.75 A 0.54
,l L.0A
=1.00 A
2 3 4 5 & 7 B 9
riH
Analytic Green's Function Factor g:(r, r')
100 e
_____.—'-'—'_"'_ _'_'_,_,_.—-—'—'_'_-_-_ _______———
075 — o -
035 Box Size
— 0.14
000 0.54
035 1.0A
! — 2.04
-0.50 |
/ 5.04
o754V — 1004
20,04
-1.00
2 3 4 5 & 71 B 9
riH

11



|
Algorithm

Algorithm Flowchart

There are 3 main steps in the IFGF algorithm:

Spatial

Partitioning

O(NlogN)

g Engi nccring Science

N UNIVERSITY OF TORONTO

Direct
Evaluations on
the Lowest Level

O(N)

Interpolate &

Propagate Up

O(NlogN)

12



|
Algorithm

1. Spatial Partitioning

IFGF begins by subdividing the space which bounds
the scatterer into an octree of boxes.

When moving from leveld — (d + 1), each box
spawns 8 new boxes (4 in 2D).

This is repeated until the side-length, Hp, at the leaf

A .
depth, D, is " This ensures that the Green function
does not vary much over the lowest boxes.

g Engi nccring Science

N UNIVERSITY OF TORONTO

IFGF Spatial Partitioning

1 Scatterer

~= Level 0
£ Level l

) Level 2

[ ] Level 3
\

2D circular scatterer withr = 4

13



|
Algorithm

2. Direct Evaluations on Lowest Level

On the leaf level of the octree, compute the

interactions only between points in adjacent  Pirectly compute for
neighboring points

IFGF Spatial Partitioning

1 Scatterer

boxes. >

Also, choose a fixed number of interpolation points
per box and treat those as observation points
* Selecting these follows the cone hierarchy,
explained later

£ 4
4y EHglﬂCC]'ll']g Science

N UNIVERSITY OF TORONTO

ob ~= Level 0
X 3 Level 1
Obs / Soyrce 1 Level 2
[ Level 3
e \

N\

/

N

d

2D circular scatterer withr = 4

14



|
Algorithm

3. Interpolate & Propagate Up

For each box, we interpolate the field using the analytic
k-
factor as F&(#) = I‘i—(r_()i, where I¥(#) is computed by

o(7rf)

interpolation.

Moving up the tree, the field at each pointis re-centered

using:
G (?, r,?)
F.d_l =
- (7
childrenof k J

, Fie ()

At the root, we are left with the approximated full field.

g Engi nccring Science

N UNIVERSITY OF TORONTO

2D Octree (Half-Pruned)

/ N\
AN
/0N

AN AN N

15



]
Methods

Project Roadmap

Implement a Test scaling, Integrate IFGF
C++ IFGF runtime, into REBEL
library memory (GMRES)

Evaluate on
real layouts

Produce IFGF Test scaling &
in Python runtime

s, & A
“y .'.'51'\ 1 7
E=0



]
Methods

Project Timeline

Implement a
C++ IFGF
library

Produce IFGF Test scaling &

runtime

in Python

November December March
2024 2025 2025
TORONTO

Test scaling,
runtime,
memory

End March
2025

Integrate IFGF
into REBEL
(GMRES)

Currently
here

Evaluate on
real layouts

18



]
Methods

File Structure

ifgf.py
* Top-level. Implements the evaluation of the three-step algorithmic process
interpolation.py
* Implements the Chebyshev interpolation routine
octree.py
* |Implements the tree data structure and splitting
cone.py
* |Implements the interpolation cone classes
boundingbox.py
* |Implements the boxes for the octree class
kernels.py
* |Implements the Helmholtz and Laplace kernels. Also performs direct evaluations
utils.py
e Misc. utility functions

g Engi nccring Science

N UNIVERSITY OF TORONTO

19



]
Methods

Data Structures

Class IFGF: the top-level class for implementing IFGF
« IFGF(source_points, target_points, kernel)
* Prepares spatial partitioning (downward pass) — Octree and Cones
« IFGF.evaluate(weights)
* Performs direct evaluation and interpolation (upward pass)
Class Octree: the core data structure responsible for spatial partitioning. Each Octree objectis also a node.
* Octree(source_points, target_points, level, parent, children)
* Builds an Octree node
* Octree.split(criterion)
* Recursively builds the tree
* Octree.compute_interaction_list:
« Computes the relevant boxes on which to interpolate onto
* Octree.generate_cones()
« Computes the cone domains and spawns Cone objects

[ Engirmcring Science

N UNIVERSITY OF TORONTO

20



]
Methods

Data Structures

Class BoundingBox: The object which contains the information on points in the box
« BoundingBox(source_points, target_points, r_center, side_length)
* Builds a box containing the points
« BoundingBox.split()
 Spawns children boxes (nhot recursive)
Class Cone: The main object for interpolation
« Cone(source_points, interpolation_points)
* Builds the arrangement of interpolation points within a cone domain
« Cone.refine(criterion)
 Determines how the cones will split when moving up a level (depends on the electrical length of
the underlying box)

g Engi nccring Science

N UNIVERSITY OF TORONTO

21



]
Methods

Data Structures

Class Kernel: Defines the underlying nature of the scattering problem

* Kernel(wavenumber)

 Constructs the appropriate Green Function kernel (Helmholtz or Laplace). The wavenumber
can be complex

« Kernel.evaluate(source_points, target_points, weights)
* Directly solves the matrix-vector multiplication for a subset of points
 Can call this function on all points to get the inefficient O (N?) solution
 Usedinvalidation and on the lowest-level of the Octree

g Engi nccring Science

N UNIVERSITY OF TORONTO

22



]
Methods

Translation to C++

Goal is to provide a serial implementation in the form of a library which can be called by any iterative solver.
kernel = Kernel(wavenumber)

ifgf = IFGF(sources, targets, kernel)
ifgf.evaluate(weights)

File structure looks the same as the Python implementation, with HPP headers.

Used the MinGW64 compiler.

Used C++ standard library and Eigen for linear algebra.
* Eigenis an easy translation from NumPy

g Engi nccring Science

N UNIVERSITY OF TORONTO

23



]
Methods

Integration into REBEL: Geometry

REBEL converts .gds files into a triangular mesh. IFGF needs a
point-cloud to work.

To solve this, we consider one point per triangle, at the centroid.

B
Ny
o Engmeermg Science
D

N UNIVERSITY OF TORONTO

Converting a spherical surface mesh to a point-cloud

24



]
Methods

Integration into Rebel: Integration

Rebel explicitly solves three types of integrals in its current formulation:

1. Singularintegrals: occurs when 77 = 77", In IFGF we do not compute these - instead we
leave Rebel to solve this using singularity extraction.

2. Far-field integrals -|
3. Near-field integrals J

v

IFGF handles these internally — we just pass all non-singular
integral points to the IFGF solver without making the distinction.

g Engi nccring Science

N UNIVERSITY OF TORONTO

25



]
Methods

Testing Protocol: Measuring Error

When reporting the error of the algorithm, we compared the results produced by IFGF to those produced by
naively applying the kernel function to all source and target points (i.e., the direct evaluation method)

The error metric used was the root-mean-square-error (RMSE):

@) @ |
IIFGF o IDirect
2

Xy

€E =

(@)
\ ZN |IDirect

where II(I?GF is the result at the i"observation point computed with IFGF and
()
I

pirect 1S the result at the it"observation point computed with the kernel directly

g Engi nccring Science

N UNIVERSITY OF TORONTO

26



Results

Preliminary Python Runtime Analysis

The test was conducted on a sphere with radius 1Tm and wavenumber 8w rad/m. The point density was
increased

Runtime Comparison: IFGF vs Direct

—o— IFGF »
—e— Direct /

102 A

Runtime (seconds, log scale)

10!

%‘:@ 102 103
s N (log scale)

i Engineering Science

UNIVERSITY OF TORONTO



. 4J 3 5 J |
Background Algorithm Methods Results Next Steps Conclusion

Tests Conducted for C++ Evaluation

Point-cloud used for r=8m, N=64000 evaluation

All source coefficients were initialized to a
value € [0,1]

Wavenumber of k = 2m [rad/m] was used for
all cases

Radius of the sphere doubled each time:
1,2,4,8,16,32 [m]

Number of points varied proportionally to the
area of the surface:
1,4, 16, 64, 256, 1024 [x10° points]

o o o
» o ©

Random Value [0, 1]

o
N

28



C++ Runtime

Results

Analysis

Time Complexity Analysis of IFGF vs Direct Solution

IFGF Runtime S
. ) -
107} = Direct Runtime ’,r’
——- IFGF Fit: O(N1%) i
-
~~- Direct Fit: O(N2?) i
-
106 - }’/’
Ced
L
”’
//’/
105 F /z”
-
—_— ,”
QL e
t
GEJ 104 /”

I ! -
= //’, ,"”,’
& e -

103} LS2s e

/’/ —""
7 —"—
- -
- e
102 | ,/’ ____
/” _—”’—
- -
-7 ——
”/ "“—
1 el ==
10°E w -
’—’d’
L P L 1 L L 1 L 1 P | 1 L 1 1 L L L P | 1 L L L L L L |
103 104 10° 10°

Engineering Science

i

Number of Points (N)

" UNIVERSITY OF TORONTO

29



Results

C++ Peak Memory Analysis

Used the <psapi.h> library interface, linked with MinGW

IFGF Peak Memory (MB)

104 L

103 L

102 L

Space Complexity of IFGF

Measured Memory Usage
——- Trendline: y = 0.03 * N~1.05 -7

103 104 10° 106
Points (N)

30



Results

C++ Error Analysis

Due to the runtime limitations, the O(N?) direct computation was only performed on the first 3 datapoints.

The errors for these are listed below:

Wavenumber )
e m“ HHSE Errer 68

1000 4.10
2T 2 4000 6.80
2T 4 16000 16.20

Fnkjineel ing Science

%) UNIVERSITY OF TORONTO

31



|
Next Steps

Next Steps: Finishing REBEL Integration

| have a functioning header library which compiles and can construct the IFGF operator class.

REBEL is installed, currently through the use of Docker.

| have created a wrapper header for Eigen, similar to what is done currently with LAPACK. | am able to link
REBEL against Eigen

| have created a new directory named “/shared_memory/ifgf”

Started writing code for the swapping of the near- and far-field integrals. Need to change the main rebel file
to include this acceleration and run some unit tests still

Instead of including Eigen as the wrapper, exploring using a SLL or DLL instead

g Engi nccring Science

N UNIVERSITY OF TORONTO

32



Conclusion

Conclusion

It is evident that IFGF provides the much-needed acceleration for electromagnetic scattering problem
solutions.

A performance and accuracy comparison against FMM and AlIM is the next step towards demonstrating the
scalability of this algorithm.

£ 4
4y EHglﬂCC]'ll']g Science

N UNIVERSITY OF TORONTO

33



Implementing and Testing the

Interpolated Factored Green Function Method

For the Accelerated Evaluation of Potentials in Electromagnetic Simulations

Michael P. Acquaviva
Supervised by: Piero Triverio

o5 Engineering Science

34



	Title
	Slide 1: Implementing and Testing the Interpolated Factored Green Function Method For the Accelerated Evaluation of Potentials in Electromagnetic Simulations

	Background
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

	Algorithm
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

	Methods
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

	Results
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

	Next Steps
	Slide 32

	Conclusion
	Slide 33
	Slide 34: Implementing and Testing the Interpolated Factored Green Function Method For the Accelerated Evaluation of Potentials in Electromagnetic Simulations


