
Implementing and Testing the

Interpolated Factored Green Function Method
For the Accelerated Evaluation of Potentials in Electromagnetic Simulations
Michael P. Acquaviva

1

Supervised by: Piero Triverio

2

Electromagnetic Simulation

A 3D-IC interposer current density simulation
Credit: ANSYS

Electromagnetic simulation is critical to the
development of modern electronics.

As circuits become more complex, simulation
and CAD tools must evolve to handle increasing
electromagnetic detail and scale.

Background Algorithm Methods Results Next Steps Conclusion

3

From Maxwell to Matrix

Scattering problems can be reformulated as integral
equations from Maxwell’s equations.

Using discrete integral formulations, the field at a
discrete observation point is given by the
convolution of the Green’s function and the
induced current density Ԧ𝐽.

For all points, this leads to a dense linear system:
𝑨 Ԧ𝐽 = 𝑏

where 𝑨 is the Green’s function matrix and 𝑏 is the
known incident field.

Background Algorithm Methods Results Next Steps Conclusion

4

Solving the Linear System

Direct solutions (e.g., LU decomposition) are too
expensive for large numbers of points, 𝑁.

• 𝒪(𝑁2) memory
• 𝒪 𝑁3 runtime

𝑨 Ԧ𝐽 = 𝑏

Instead, we use iterative solvers (e.g., GMRES)
which only require the computation of the matrix-
vector product.

Informed guess
for Ԧ𝑱

Compute 𝑨 Ԧ𝐽

Compare 𝑨 Ԧ𝐽 to Ԧ𝑏

Within
𝝐 ?

No Yes
Return Ԧ𝑱

Bottleneck!

General iterative solver flowchart

Background Algorithm Methods Results Next Steps Conclusion

5

The Challenge with Classical Methods

Computing the Green Function matrix and
performing the matrix-vector multiplication is
expensive:

• 𝒪(𝑁2) memory
• 𝒪 𝑁2 runtime

Background Algorithm Methods Results Next Steps Conclusion

This makes large-scale simulations infeasible as
the number of points grows.

6

The Challenge with Classical Methods

To simulate modern designs, we need algorithms
that scale better than quadratic.

Background Algorithm Methods Results Next Steps Conclusion

7

Current Solutions for Fast Solvers
Fast industry solvers currently employ some variant of one of the two following algorithms.
Both achieve 𝒪(𝑁 log 𝑁) time and space complexity.

Background Algorithm Methods Results Next Steps Conclusion

Fast Multipole Method (FMM) Adaptive Integral Method (AIM)

Groups sources hierarchically; approximates far-field
using multipole expansions.

Interpolates to a uniform grid; uses FFT to accelerate
convolution operations.

 Requires separate integration routines for
near- and far-field points.

 Difficult to parallelize due to the use of the FFT

 Requires the points be placed on a uniform grid –
this makes complex geometries difficult to simulate

 Accuracy drops as frequency increases – need
to compensate with more terms in the multipole
expansion

8

Interpolated Factored Green Function Method

Background Algorithm Methods Results Next Steps Conclusion

A method presented in 2021, promising to
compute the matrix-vector product in:

• 𝒪(𝑁 log 𝑁) memory
• 𝒪 𝑁 log 𝑁 runtime

It does so by approximating the Green’s
function using interpolation

9

Interpolated Factored Green Function Method

Background Algorithm Methods Results Next Steps Conclusion

The authors claim some key advantages over
AIM and FMM:

 Parallelizable due to spatial partitioning
in a tree structure

 Does not require separate near- and far-
field integration routines (this is inherent in
the algorithm)

 Error remains bounded with increasing
wavelength

10

Factoring the Green’s Function

Background Algorithm Methods Results Next Steps Conclusion

Consider the Helmholtz Green’s function:

𝐺 𝑟, Ԧ𝑟′ =
𝑒𝑗𝑘| Ԧ𝑟− Ԧ𝑟′|

4𝜋| Ԧ𝑟 − Ԧ𝑟′|

Now, say ∃ a square box with side-length 𝑆 and
centered at 𝑟𝑠 which contains the source, Ԧ𝑟′. We can
re-write the Green’s function for the observation point,
Ԧ𝑟, as:

𝐺 𝑟, Ԧ𝑟′ =
𝑒𝑗𝑘 Ԧ𝑟−𝑟𝑠

4𝜋 Ԧ𝑟 − 𝑟𝑠

| Ԧ𝑟 − 𝑟𝑠|

| Ԧ𝑟 − Ԧ𝑟′|
𝑒𝑗𝑘 Ԧ𝑟− Ԧ𝑟′ − Ԧ𝑟−𝑟𝑠

We can call the left factor 𝐺 𝑟, Ԧ𝑟𝑠 , which depends only
on the target point and the box location. The right
factor is 𝑔𝑠 𝑟, Ԧ𝑟′, 𝑟𝑠 .

Test setup, assuming the box is centered at the origin

11

Factoring the Green’s Function

Background Algorithm Methods Results Next Steps Conclusion

We will now assume 𝑟𝑠 = 0 (for simplicity):

Centered factor: 𝐺 𝑟, 0 =
𝑒𝑗𝑘 𝑟

4𝜋 Ԧ𝑟

Analytic factor: 𝑔𝑠 𝑟, Ԧ𝑟′ =
| Ԧ𝑟|

| Ԧ𝑟− Ԧ𝑟′|
𝑒𝑗𝑘 Ԧ𝑟− Ԧ𝑟′ − Ԧ𝑟

Notice the bottom plot. Even for electrically-large box sizes,
the analytic factor experiences slow oscillations (over the box)
 ⇒ Can be interpolated using polynomials!

Now, we only need to compute 𝐺 directly for a source at the
center of each box and sample a few other interpolation points.

12

Algorithm Flowchart

Background Algorithm Methods Results Next Steps Conclusion

There are 3 main steps in the IFGF algorithm:

Spatial
Partitioning

Direct
Evaluations on

the Lowest Level

Interpolate &
Propagate Up

𝒪(𝑁 log 𝑁) 𝒪(𝑁) 𝒪(𝑁 log 𝑁)

13

1. Spatial Partitioning

Background Algorithm Methods Results Next Steps Conclusion

IFGF begins by subdividing the space which bounds
the scatterer into an octree of boxes.

When moving from level d → (𝑑 + 1), each box
spawns 8 new boxes (4 in 2D).

This is repeated until the side-length, 𝐻𝐷, at the leaf

depth, 𝐷, is 𝜆
4

. This ensures that the Green function
does not vary much over the lowest boxes.

2D circular scatterer with 𝑟 = 𝜆

14

2. Direct Evaluations on Lowest Level

Background Algorithm Methods Results Next Steps Conclusion

2D circular scatterer with 𝑟 = 𝜆

SourceObs

ObsDirectly compute for
neighboring points

On the leaf level of the octree, compute the
interactions only between points in adjacent
boxes.

Also, choose a fixed number of interpolation points
per box and treat those as observation points

• Selecting these follows the cone hierarchy,
explained later

15

3. Interpolate & Propagate Up

Background Algorithm Methods Results Next Steps Conclusion

For each box, we interpolate the field using the analytic

factor as 𝐹𝑘
𝑑 Ԧ𝑟 =

𝐼𝑑
𝑘(Ԧ𝑟)

𝐺 Ԧ𝑟,𝑟𝑘
𝑑

, where 𝐼𝑑
𝑘(Ԧ𝑟) is computed by

interpolation.

Moving up the tree, the field at each point is re-centered
using:

𝐹𝑗
𝑑−1 = ෍

𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑘

𝐺 Ԧ𝑟, 𝑟𝑘
𝑑

𝐺 Ԧ𝑟, 𝑟𝑗
𝑑−1

𝐹𝑘
𝑑(Ԧ𝑟)

At the root, we are left with the approximated full field.

17

Project Roadmap

Background Algorithm Methods Results Next Steps Conclusion

Produce IFGF
in Python

Test scaling &
runtime

Implement a
C++ IFGF

library

Test scaling,
runtime,
memory

Integrate IFGF
into REBEL

(GMRES)

Evaluate on
real layouts

18

Project Timeline

Background Algorithm Methods Results Next Steps Conclusion

Produce IFGF
in Python

Test scaling &
runtime

Implement a
C++ IFGF

library

Test scaling,
runtime,
memory

Integrate IFGF
into REBEL

(GMRES)

Evaluate on
real layouts

Currently
here

November
2024

December
2025

March
2025

End March
2025

19

File Structure

Background Algorithm Methods Results Next Steps Conclusion

ifgf.py
• Top-level. Implements the evaluation of the three-step algorithmic process

interpolation.py
• Implements the Chebyshev interpolation routine

octree.py
• Implements the tree data structure and splitting

cone.py
• Implements the interpolation cone classes

boundingbox.py
• Implements the boxes for the octree class

kernels.py
• Implements the Helmholtz and Laplace kernels. Also performs direct evaluations

utils.py
• Misc. utility functions

20

Data Structures

Background Algorithm Methods Results Next Steps Conclusion

Class IFGF: the top-level class for implementing IFGF
• IFGF(source_points, target_points, kernel)

• Prepares spatial partitioning (downward pass) – Octree and Cones
• IFGF.evaluate(weights)

• Performs direct evaluation and interpolation (upward pass)
Class Octree: the core data structure responsible for spatial partitioning. Each Octree object is also a node.

• Octree(source_points, target_points, level, parent, children)
• Builds an Octree node

• Octree.split(criterion)
• Recursively builds the tree

• Octree.compute_interaction_list:
• Computes the relevant boxes on which to interpolate onto

• Octree.generate_cones()
• Computes the cone domains and spawns Cone objects

21

Data Structures

Background Algorithm Methods Results Next Steps Conclusion

Class BoundingBox: The object which contains the information on points in the box
• BoundingBox(source_points, target_points, r_center, side_length)

• Builds a box containing the points
• BoundingBox.split()

• Spawns children boxes (not recursive)
Class Cone: The main object for interpolation

• Cone(source_points, interpolation_points)
• Builds the arrangement of interpolation points within a cone domain

• Cone.refine(criterion)
• Determines how the cones will split when moving up a level (depends on the electrical length of

the underlying box)

22

Data Structures

Background Algorithm Methods Results Next Steps Conclusion

Class Kernel: Defines the underlying nature of the scattering problem
• Kernel(wavenumber)

• Constructs the appropriate Green Function kernel (Helmholtz or Laplace). The wavenumber
can be complex

• Kernel.evaluate(source_points, target_points, weights)
• Directly solves the matrix-vector multiplication for a subset of points
• Can call this function on all points to get the inefficient 𝒪(𝑁2) solution
• Used in validation and on the lowest-level of the Octree

23

Translation to C++

Background Algorithm Methods Results Next Steps Conclusion

Goal is to provide a serial implementation in the form of a library which can be called by any iterative solver.
kernel = Kernel(wavenumber)
ifgf = IFGF(sources, targets, kernel)
ifgf.evaluate(weights)

File structure looks the same as the Python implementation, with HPP headers.

Used the MinGW64 compiler.

Used C++ standard library and Eigen for linear algebra.
• Eigen is an easy translation from NumPy

24

Integration into REBEL: Geometry

Background Algorithm Methods Results Next Steps Conclusion

REBEL converts .gds files into a triangular mesh. IFGF needs a
point-cloud to work.

To solve this, we consider one point per triangle, at the centroid.

Converting a spherical surface mesh to a point-cloud

25

Integration into Rebel: Integration

Background Algorithm Methods Results Next Steps Conclusion

Rebel explicitly solves three types of integrals in its current formulation:
1. Singular integrals: occurs when 𝑟𝑖 ≈ 𝑟𝑗′. In IFGF we do not compute these – instead we

leave Rebel to solve this using singularity extraction.

2. Far-field integrals
3. Near-field integrals

IFGF handles these internally – we just pass all non-singular
integral points to the IFGF solver without making the distinction.

26

Testing Protocol: Measuring Error

Background Algorithm Methods Results Next Steps Conclusion

When reporting the error of the algorithm, we compared the results produced by IFGF to those produced by
naïvely applying the kernel function to all source and target points (i.e., the direct evaluation method)

The error metric used was the root-mean-square-error (RMSE):

𝜖 =
σ𝑁 𝐼𝐼𝐹𝐺𝐹

(𝑖)
− 𝐼𝐷𝑖𝑟𝑒𝑐𝑡

(𝑖) 2

σ𝑁 𝐼𝐷𝑖𝑟𝑒𝑐𝑡
(𝑖) 2

where 𝐼𝐼𝐹𝐺𝐹
(𝑖) is the result at the 𝑖𝑡ℎobservation point computed with IFGF and

𝐼𝐷𝑖𝑟𝑒𝑐𝑡
(𝑖) is the result at the 𝑖𝑡ℎobservation point computed with the kernel directly

27

Preliminary Python Runtime Analysis

Background Algorithm Methods Results Next Steps Conclusion

The test was conducted on a sphere with radius 1m and wavenumber 8𝜋 rad/m. The point density was
increased

28

Tests Conducted for C++ Evaluation

Background Algorithm Methods Results Next Steps Conclusion

All source coefficients were initialized to a
value ∈ [0,1]

Wavenumber of 𝑘 = 2𝜋 [rad/m] was used for
all cases

Radius of the sphere doubled each time:
1,2,4,8,16,32 [m]

Number of points varied proportionally to the
area of the surface:
1, 4, 16, 64, 256, 1024 [x103 points]

29

C++ Runtime Analysis

Background Algorithm Methods Results Next Steps Conclusion

30

C++ Peak Memory Analysis

Background Algorithm Methods Results Next Steps Conclusion

Used the <psapi.h> library interface, linked with MinGW

31

C++ Error Analysis

Background Algorithm Methods Results Next Steps Conclusion

Due to the runtime limitations, the 𝒪(𝑁2) direct computation was only performed on the first 3 datapoints.
The errors for these are listed below:

Wavenumber
[rad/m] Radius [m] Points RMSE Error (x10-3)

2𝜋 1 1000 4.10

2𝜋 2 4000 6.80

2𝜋 4 16000 16.20

32

Next Steps: Finishing REBEL Integration

Background Algorithm Methods Results Next Steps Conclusion

I have a functioning header library which compiles and can construct the IFGF operator class.

REBEL is installed, currently through the use of Docker.

I have created a wrapper header for Eigen, similar to what is done currently with LAPACK. I am able to link
REBEL against Eigen

I have created a new directory named “/shared_memory/ifgf”

Started writing code for the swapping of the near- and far-field integrals. Need to change the main rebel file
to include this acceleration and run some unit tests still

Instead of including Eigen as the wrapper, exploring using a SLL or DLL instead

33

Conclusion

Background Algorithm Methods Results Next Steps Conclusion

It is evident that IFGF provides the much-needed acceleration for electromagnetic scattering problem
solutions.

A performance and accuracy comparison against FMM and AIM is the next step towards demonstrating the
scalability of this algorithm.

Implementing and Testing the

Interpolated Factored Green Function Method
For the Accelerated Evaluation of Potentials in Electromagnetic Simulations
Michael P. Acquaviva

34

Supervised by: Piero Triverio

	Title
	Slide 1: Implementing and Testing the Interpolated Factored Green Function Method For the Accelerated Evaluation of Potentials in Electromagnetic Simulations

	Background
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

	Algorithm
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

	Methods
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

	Results
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

	Next Steps
	Slide 32

	Conclusion
	Slide 33
	Slide 34: Implementing and Testing the Interpolated Factored Green Function Method For the Accelerated Evaluation of Potentials in Electromagnetic Simulations

