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Electromagnetic Simulation

A 3D-IC interposer current density simulation
Credit: ANSYS

Electromagnetic simulation is critical to the 
development of modern electronics.

As circuits become more complex, simulation 
and CAD tools must evolve to handle increasing 
electromagnetic detail and scale.

Background Algorithm Methods Results Next Steps Conclusion
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From Maxwell to Matrix

Scattering problems can be reformulated as integral 
equations from Maxwell’s equations.

Using discrete integral formulations, the field at a 
discrete observation point is given by the 
convolution of the Green’s function and the 
induced current density Ԧ𝐽.

For all points, this leads to a dense linear system:
𝑨 Ԧ𝐽 = 𝑏

where 𝑨 is the Green’s function matrix and 𝑏 is the 
known incident field.

Background Algorithm Methods Results Next Steps Conclusion
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Solving the Linear System

Direct solutions (e.g., LU decomposition) are too 
expensive for large numbers of points, 𝑁.

• 𝒪(𝑁2) memory
• 𝒪 𝑁3  runtime

𝑨 Ԧ𝐽 = 𝑏

Instead, we use iterative solvers (e.g., GMRES) 
which only require the computation of the matrix-
vector product.

Informed guess 
for Ԧ𝑱 

Compute 𝑨 Ԧ𝐽 

Compare 𝑨 Ԧ𝐽 to Ԧ𝑏 

Within 
𝝐 ?

No Yes
Return Ԧ𝑱

Bottleneck!

General iterative solver flowchart
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The Challenge with Classical Methods

Computing the Green Function matrix and 
performing the matrix-vector multiplication is 
expensive:

• 𝒪(𝑁2) memory
• 𝒪 𝑁2  runtime

Background Algorithm Methods Results Next Steps Conclusion

This makes large-scale simulations infeasible as 
the number of points grows.
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The Challenge with Classical Methods

To simulate modern designs, we need algorithms 
that scale better than quadratic.
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Current Solutions for Fast Solvers
Fast industry solvers currently employ some variant of one of the two following algorithms. 
Both achieve 𝒪(𝑁 log 𝑁) time and space complexity.

Background Algorithm Methods Results Next Steps Conclusion

Fast Multipole Method (FMM) Adaptive Integral Method (AIM)

Groups sources hierarchically; approximates far-field 
using multipole expansions.

Interpolates to a uniform grid; uses FFT to accelerate 
convolution operations.

  Requires separate integration routines for 
near- and far-field points.

  Difficult to parallelize due to the use of the FFT 

  Requires the points be placed on a uniform grid – 
this makes complex geometries difficult to simulate

  Accuracy drops as frequency increases – need 
to compensate with more terms in the multipole 
expansion
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Interpolated Factored Green Function Method

Background Algorithm Methods Results Next Steps Conclusion

A method presented in 2021, promising to 
compute the matrix-vector product in:

• 𝒪(𝑁 log 𝑁) memory
• 𝒪 𝑁 log 𝑁  runtime

It does so by approximating the Green’s 
function using interpolation
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Interpolated Factored Green Function Method

Background Algorithm Methods Results Next Steps Conclusion

The authors claim some key advantages over 
AIM and FMM:

 Parallelizable due to spatial partitioning 
in a tree structure

 Does not require separate near- and far-
field integration routines (this is inherent in 
the algorithm)

 Error remains bounded with increasing 
wavelength



10

Factoring the Green’s Function

Background Algorithm Methods Results Next Steps Conclusion

Consider the Helmholtz Green’s function:

𝐺 𝑟, Ԧ𝑟′ =
𝑒𝑗𝑘| Ԧ𝑟− Ԧ𝑟′|

4𝜋| Ԧ𝑟 − Ԧ𝑟′|

Now, say ∃ a square box with side-length 𝑆 and 
centered at 𝑟𝑠 which contains the source, Ԧ𝑟′. We can 
re-write the Green’s function for the observation point, 
Ԧ𝑟, as:

𝐺 𝑟, Ԧ𝑟′ =
𝑒𝑗𝑘 Ԧ𝑟−𝑟𝑠

4𝜋 Ԧ𝑟 − 𝑟𝑠

| Ԧ𝑟 − 𝑟𝑠|

| Ԧ𝑟 − Ԧ𝑟′|
𝑒𝑗𝑘 Ԧ𝑟− Ԧ𝑟′ − Ԧ𝑟−𝑟𝑠

We can call the left factor 𝐺 𝑟, Ԧ𝑟𝑠 , which depends only 
on the target point and the box location. The right 
factor is 𝑔𝑠 𝑟, Ԧ𝑟′, 𝑟𝑠 .

Test setup, assuming the box is centered at the origin
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Factoring the Green’s Function

Background Algorithm Methods Results Next Steps Conclusion

We will now assume 𝑟𝑠 = 0 (for simplicity):

Centered factor: 𝐺 𝑟, 0 =
𝑒𝑗𝑘 𝑟

4𝜋 Ԧ𝑟

Analytic factor: 𝑔𝑠 𝑟, Ԧ𝑟′ =
| Ԧ𝑟|

| Ԧ𝑟− Ԧ𝑟′|
𝑒𝑗𝑘 Ԧ𝑟− Ԧ𝑟′ − Ԧ𝑟

Notice the bottom plot. Even for electrically-large box sizes, 
the analytic factor experiences slow oscillations (over the box)
 ⇒ Can be interpolated using polynomials! 

Now, we only need to compute 𝐺 directly for a source at the 
center of each box and sample a few other interpolation points. 
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Algorithm Flowchart

Background Algorithm Methods Results Next Steps Conclusion

There are 3 main steps in the IFGF algorithm:

Spatial 
Partitioning

Direct 
Evaluations on 

the Lowest Level

Interpolate & 
Propagate Up

𝒪(𝑁 log 𝑁) 𝒪(𝑁) 𝒪(𝑁 log 𝑁) 
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1. Spatial Partitioning

Background Algorithm Methods Results Next Steps Conclusion

IFGF begins by subdividing the space which bounds 
the scatterer into an octree of boxes.

When moving from level d → (𝑑 + 1), each box 
spawns 8 new boxes (4 in 2D).

This is repeated until the side-length, 𝐻𝐷, at the leaf 

depth, 𝐷, is 𝜆
4

. This ensures that the Green function 
does not vary much over the lowest boxes.

2D circular scatterer with 𝑟 = 𝜆
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2. Direct Evaluations on Lowest Level

Background Algorithm Methods Results Next Steps Conclusion

2D circular scatterer with 𝑟 = 𝜆

SourceObs

ObsDirectly compute for 
neighboring points

On the leaf level of the octree, compute the 
interactions only between points in adjacent 
boxes.

Also, choose a fixed number of interpolation points 
per box and treat those as observation points

• Selecting these follows the cone hierarchy, 
explained later
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3. Interpolate & Propagate Up

Background Algorithm Methods Results Next Steps Conclusion

For each box, we interpolate the field using the analytic 

factor as 𝐹𝑘
𝑑 Ԧ𝑟 =

𝐼𝑑
𝑘( Ԧ𝑟)

𝐺 Ԧ𝑟,𝑟𝑘
𝑑

, where 𝐼𝑑
𝑘( Ԧ𝑟) is computed by 

interpolation.

Moving up the tree, the field at each point is re-centered 
using:

𝐹𝑗
𝑑−1 = ෍

𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑘

𝐺 Ԧ𝑟, 𝑟𝑘
𝑑

𝐺 Ԧ𝑟, 𝑟𝑗
𝑑−1

𝐹𝑘
𝑑( Ԧ𝑟)

At the root, we are left with the approximated full field.
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Project Roadmap

Background Algorithm Methods Results Next Steps Conclusion

Produce IFGF 
in Python

Test scaling & 
runtime

Implement a 
C++ IFGF 

library

Test scaling, 
runtime, 
memory

Integrate IFGF 
into REBEL 

(GMRES)

Evaluate on 
real layouts
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Project Timeline

Background Algorithm Methods Results Next Steps Conclusion

Produce IFGF 
in Python

Test scaling & 
runtime

Implement a 
C++ IFGF 

library

Test scaling, 
runtime, 
memory

Integrate IFGF 
into REBEL 

(GMRES)

Evaluate on 
real layouts

Currently 
here

November 
2024

December 
2025

March 
2025

End March 
2025
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File Structure

Background Algorithm Methods Results Next Steps Conclusion

ifgf.py
• Top-level. Implements the evaluation of the three-step algorithmic process

interpolation.py
• Implements the Chebyshev interpolation routine

octree.py
• Implements the tree data structure and splitting

cone.py
• Implements the interpolation cone classes

boundingbox.py
• Implements the boxes for the octree class

kernels.py
• Implements the Helmholtz and Laplace kernels. Also performs direct evaluations

utils.py
• Misc. utility functions
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Data Structures

Background Algorithm Methods Results Next Steps Conclusion

Class IFGF: the top-level class for implementing IFGF
• IFGF(source_points, target_points, kernel) 

• Prepares spatial partitioning (downward pass) – Octree and Cones
• IFGF.evaluate(weights)

• Performs direct evaluation and interpolation (upward pass)
Class Octree: the core data structure responsible for spatial partitioning. Each Octree object is also a node.

• Octree(source_points, target_points, level, parent, children)
• Builds an Octree node

• Octree.split(criterion)
• Recursively builds the tree

• Octree.compute_interaction_list:
• Computes the relevant boxes on which to interpolate onto

• Octree.generate_cones()
• Computes the cone domains and spawns Cone objects
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Data Structures

Background Algorithm Methods Results Next Steps Conclusion

Class BoundingBox: The object which contains the information on points in the box
• BoundingBox(source_points, target_points, r_center, side_length)

• Builds a box containing the points
• BoundingBox.split()

• Spawns children boxes (not recursive)
Class Cone: The main object for interpolation

• Cone(source_points, interpolation_points)
• Builds the arrangement of interpolation points within a cone domain

• Cone.refine(criterion)
• Determines how the cones will split when moving up a level (depends on the electrical length of 

the underlying box)
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Data Structures

Background Algorithm Methods Results Next Steps Conclusion

Class Kernel: Defines the underlying nature of the scattering problem
• Kernel(wavenumber)

• Constructs the appropriate Green Function kernel (Helmholtz or Laplace). The wavenumber 
can be complex

• Kernel.evaluate(source_points, target_points, weights)
• Directly solves the matrix-vector multiplication for a subset of points
• Can call this function on all points to get the inefficient 𝒪(𝑁2) solution
• Used in validation and on the lowest-level of the Octree
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Translation to C++

Background Algorithm Methods Results Next Steps Conclusion

Goal is to provide a serial implementation in the form of a library which can be called by any iterative solver.
kernel = Kernel(wavenumber)
ifgf = IFGF(sources, targets, kernel)
ifgf.evaluate(weights)

File structure looks the same as the Python implementation, with HPP headers.

Used the MinGW64 compiler.

Used C++ standard library and Eigen for linear algebra.
• Eigen is an easy translation from NumPy
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Integration into REBEL: Geometry

Background Algorithm Methods Results Next Steps Conclusion

REBEL converts .gds files into a triangular mesh. IFGF needs a 
point-cloud to work.

To solve this, we consider one point per triangle, at the centroid.

Converting a spherical surface mesh to a point-cloud
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Integration into Rebel: Integration

Background Algorithm Methods Results Next Steps Conclusion

Rebel explicitly solves three types of integrals in its current formulation:
1. Singular integrals: occurs when 𝑟𝑖 ≈ 𝑟𝑗′. In IFGF we do not compute these – instead we 

leave Rebel to solve this using singularity extraction.

2. Far-field integrals
3. Near-field integrals

IFGF handles these internally – we just pass all non-singular 
integral points to the IFGF solver without making the distinction. 
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Testing Protocol: Measuring Error

Background Algorithm Methods Results Next Steps Conclusion

When reporting the error of the algorithm, we compared the results produced by IFGF to those produced by 
naïvely applying the kernel function to all source and target points (i.e., the direct evaluation method)

The error metric used was the root-mean-square-error (RMSE):

𝜖 =
σ𝑁 𝐼𝐼𝐹𝐺𝐹

(𝑖)
− 𝐼𝐷𝑖𝑟𝑒𝑐𝑡

(𝑖) 2

σ𝑁 𝐼𝐷𝑖𝑟𝑒𝑐𝑡
(𝑖) 2

where 𝐼𝐼𝐹𝐺𝐹
(𝑖)  is the result at the 𝑖𝑡ℎobservation point computed with IFGF and

𝐼𝐷𝑖𝑟𝑒𝑐𝑡
(𝑖)  is the result at the 𝑖𝑡ℎobservation point computed with the kernel directly
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Preliminary Python Runtime Analysis

Background Algorithm Methods Results Next Steps Conclusion

The test was conducted on a sphere with radius 1m and wavenumber 8𝜋 rad/m. The point density was 
increased
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Tests Conducted for C++ Evaluation

Background Algorithm Methods Results Next Steps Conclusion

All source coefficients were initialized to a 
value ∈ [0,1]

Wavenumber of 𝑘 = 2𝜋 [rad/m] was used for 
all cases

Radius of the sphere doubled each time: 
1,2,4,8,16,32 [m]

Number of points varied proportionally to the 
area of the surface:
1, 4, 16, 64, 256, 1024 [x103 points]
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C++ Runtime Analysis

Background Algorithm Methods Results Next Steps Conclusion
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C++ Peak Memory Analysis

Background Algorithm Methods Results Next Steps Conclusion

Used the <psapi.h> library interface, linked with MinGW
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C++ Error Analysis

Background Algorithm Methods Results Next Steps Conclusion

Due to the runtime limitations, the 𝒪(𝑁2) direct computation was only performed on the first 3 datapoints. 
The errors for these are listed below:

Wavenumber 
[rad/m] Radius [m] Points RMSE Error (x10-3)

2𝜋 1 1000 4.10

2𝜋 2 4000 6.80

2𝜋 4 16000 16.20
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Next Steps: Finishing REBEL Integration 

Background Algorithm Methods Results Next Steps Conclusion

I have a functioning header library which compiles and can construct the IFGF operator class.

REBEL is installed, currently through the use of Docker.

I have created a wrapper header for Eigen, similar to what is done currently with LAPACK. I am able to link 
REBEL against Eigen

I have created a new directory named “/shared_memory/ifgf”

Started writing code for the swapping of the near- and far-field integrals. Need to change the main rebel file 
to include this acceleration and run some unit tests still

Instead of including Eigen as the wrapper, exploring using a SLL or DLL instead
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Conclusion

Background Algorithm Methods Results Next Steps Conclusion

It is evident that IFGF provides the much-needed acceleration for electromagnetic scattering problem 
solutions.

A performance and accuracy comparison against FMM and AIM is the next step towards demonstrating the 
scalability of this algorithm.
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